×

Looking at the arrow of time and loschmidt’s paradox through the magnifying glass of mathematical-billiard. (English) Zbl 1432.37057

Summary: The contrast between the past-future symmetry of mechanical theories and the time-arrow observed in the behaviour of real complex systems doesn’t have nowadays a fully satisfactory explanation. If one confides in the Laplace-dream that everything be exactly and completely describable by the known mechanical differential equations, the whole experimental evidence of the irreversibility of real complex processes can only be interpreted as an illusion due to the limits of human brain and shortness of human history. In this work it is surmised that in the description of real events it would be more reasonable to renounce exactness and completeness of mechanical differential equations, assuming that also further effects exist in nature, governed by different kinds of rules, in spite of being so weak to be directly unobservable in single motions. This surmise can explain not only the time-arrow, but also why, in particular cases, it can happen that approximate and/or statistical models represent an improvement of mechanical theories instead of an approximation: this happened for Boltzmann gas-model and also for the famous work of Max Planck on blackbody-radiation. And it also appears as a more promising “working hypothesis”, stimulating and guiding us to learn more about limits and origin of the basic equations, and also about the nature of chance and the meaning of probability, which is nowadays not clear in spite of the fundamental role it plays in physics. Particularly that kind of probability which gives the connection between quantum-mechanical differential equations and observable events.

MSC:

37C83 Dynamical systems with singularities (billiards, etc.)
70A05 Axiomatics, foundations
82B03 Foundations of equilibrium statistical mechanics
81P05 General and philosophical questions in quantum theory
Full Text: DOI

References:

[1] Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H.: Physical Origins of Time Asymmetry. Cambridge University Press, Cambridge (1996)
[2] Zeh, H.D.: The Physical Basis of the Direction of Time. The Frontier Collection. Springer, New York (2007) · Zbl 1146.83002
[3] Lyapunov, A. M.: Ph.D. Thesis (in Russian); Stability of Motion. St. Petersburg University, Russia (1892)
[4] Prigogine, I., Stengers, I.: The End of Certainty. Simon and Shuster (1997)
[5] Tegmark, M.: The Mathematical Universe, Foundations of Physics, vol. 38. Springer, New York (2008) · Zbl 1132.00311
[6] Amelino-Camelia, G.: Oltre l’orizzonte. Codice edizioni, Torino (2017). ISBN 978-88-7578-720-2
[7] Smolin, L.: Time Reborn. Mariner Books, New York (2014)
[8] Smolin, L.: A naturalist account of the limited, and hence reasonable, effectiveness of mathematics in physics, (2015) arXiv: 1506.03733
[9] Canales, J.: The Physicist and the Philosopher. Princeton University Press, Princeton (2015) · Zbl 1346.00056 · doi:10.1515/9781400865772
[10] Kendall, M.G., Stuart, A.: The Advanced Theory of Statistic. Charles Griffin & Company Limited, London (1958)
[11] Fisher, R.A.: Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh (1956) · Zbl 0070.36903
[12] Jaynes, E.T.: Prior probabilities. IEEE Trans. Syst. Sci. Cybern. 4(3), 227-241 (1968) · Zbl 0181.21901 · doi:10.1109/TSSC.1968.300117
[13] Ter Haar, D.: Elements of Statistical Mechanicsm, Holt. Rinehart and Winston, New York (1960)
[14] Jaynes, E.T.: Information Theory and Statistical Mechanics. Brandeis Lectures: Statistical Physics, vol. 3. W. A. Benjamin Inc., New York (1963)
[15] Prigogine, I.: Time Structure and Fluctuations, Nobel Lecture (1977)
[16] Kondepudi, D., Prigogine, I.: Modern Thermodynamics, from Heat Engines to Dissipative Structures. Wiley, New York (1998) · Zbl 0902.00007
[17] Planck, M.: Treatise on Thermodynamics. Dover Publications, New York (1926)
[18] Bohm, D.: Causality and Chance in Modern Physics. University of Pennsylvania Press, Philadelphia (1957) · doi:10.4324/9780203201107
[19] Santos, E.: Stochastic electrodynamics and the interpretation of nonrelativistic quantum mechanics. (2014) arXiv:1205.0916v2[quant-ph]
[20] Popper, K.: Conjectures and Refutations. The Growth of scientific Knowledge. Basic Books, New York (1962)
[21] Cortes, M., Gomes, H., Smolin, L.: Time asymmetric extensions of general relativity. Phys. Rev. D 92, 043502 (2015) · doi:10.1103/PhysRevD.92.043502
[22] Landau, E.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon Press, London (1958) · Zbl 0081.22207
[23] Gouëzel, S., Lanneau, E.: Un théorème de Kerckhoff, Masur et Smillie: Unique ergodicité sur le surfaces plates. Śémin. Congr. 20, 113-145. (2010) arXiv:math/0611827 · Zbl 1232.37007
[24] Reichenbach, H.: The Direction of Time. In: Maria Reichenbach (ed.) University of California Press (1971)
[25] Yukalov, V.I.: Irreversibility of time for quasi-isolated systems. Phys. Lett. A 308, 313 (2003) · Zbl 1010.70018 · doi:10.1016/S0375-9601(03)00056-2
[26] Turing, A.: On computable numbers with an application to Entscheidungsproblem. Proc. Lond. Math. Soc. 42, 230-265 (1936) · JFM 62.1059.03
[27] Petrosky, T., Prigogine, I.: Poincaré resonances and the limits of trajectory dynamics. Proc. Natl. Acad. Sci. U.S.A. 90, 9393-9397 (1993) · Zbl 0799.70002 · doi:10.1073/pnas.90.20.9393
[28] Cubitt T.S, Perez-Garcia, D., Wolf, M. M.: Undecidability of the spectral gap. Nature 528, 207-211. (2015) arXiv: 1502.04135v3 (2018) · Zbl 1513.81051
[29] Abbott, D.: The reasonable ineffectiveness of mathematics In: Proceedings of the IEEE, vol. 101, no. 10, October (2013)
[30] Welton, T.A.: Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev. 74, 1157 (1948) · Zbl 0041.33007 · doi:10.1103/PhysRev.74.1157
[31] Amelino-Camelia, G., Ellis, J., Mayromatos, N.E., Nanopoulos, D.V.: Distance measurement and wave dispersion in a liouville-string approach to quantum gravity. Int. J. Mod. Phys. A 12(03):607-623 (1996). arXiv:hep-th/9605211v129 · Zbl 1170.83375 · doi:10.1142/S0217751X97000566
[32] Lucretius, T.: De Rerum Natura (1st century BC)
[33] Heisenberg, W.: The physical Principles of the Quantum Theory. Dover Publications, New York (1930) · JFM 56.0745.04
[34] Penrose, R.: Consciousness and the Universe. Cosmology Science Publisher. IBSN 10: 10938024435 (2015)
[35] Borges, J.L.: The writing of the god. In: Aleph and Other Stories (ed.) Plume 1979 (1949)
[36] Connes A., Rovelli, C.: Von Neumann Algebra Automorphisms and time-thermodynamics relation in general covariant quantum Theories. (2008). arXiv: gr-qc/9406019,v1 · Zbl 0821.46086
[37] Rovelli, C.: L’ordine del tempo, Adelphi (2017)
[38] Cortes, M., Smolin, L.: The universe as a process of unique events. Phys. Rev. D 90, 084007 (2014) · doi:10.1103/PhysRevD.90.084007
[39] ‘t Hooft, G.: The cellular automaton interpretation of quantum mechanics. (2015) arXiv:1495.1548v3 [quant-ph] · Zbl 1348.81007
[40] ‘t Hooft, G.: Time, the arrow of time, and quantum mechanics. (2018). arXiv:1804.01383v1[quant-ph]
[41] Harsham, N.L.: Symmetry, structure, and emergent subsystems. (2018). arXiv:1801.08755v1[quant-ph]26Jan2018
[42] Coceva, C., Stefanon, M.: Experimental aspects of the statistical theory of nuclear spectra fluctuations. Nucl. Phys. A 315, 1-20 (1979) · doi:10.1016/0375-9474(79)90630-4
[43] Stefanon, M.: Description of a statistical method of analysis of neutron resonance data. Nucl. Instrum. Methods 174(1980), 243-252 (1980) · doi:10.1016/0029-554X(80)90438-3
[44] Ullmo, D.: Bohigas-Giannoni-Schmit conjecture. Scholarpedia 11, 31721 (2016) · doi:10.4249/scholarpedia.31721
[45] Dolev, Y.: Physics’ silence on time. Eur. J. Philos. Sci. 8(3), 455-469 (2018) · doi:10.1007/s13194-017-0195-z
[46] Smolin, L.: A real ensemble interpretation of quantum mechanics. Found. Phys. (2012). https://doi.org/10.1007/s10701-012-9666-4 · Zbl 1261.81011 · doi:10.1007/s10701-012-9666-4
[47] Monod J.: Chance and Necessity. Mass Market Paperback (1972)
[48] Coveney, P., Highfield, R.: The Arrow of Time, Fawcett Columbine Book, First Paperback Edition (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.