×

On the inverse eigenproblem for symmetric and nonsymmetric arrowhead matrices. (English) Zbl 1455.65067

Summary: We present a new construction of a symmetric arrow matrix from a particular spectral information: let \(\lambda^{(n)}_1\) be the minimal eigenvalue of the matrix and \(\lambda_j^{(j)} \), \(j = 1, 2,\dots, n\) the maximal eigenvalues of all leading principal submatrices of the matrix. We use such a procedure to construct a nonsymmetric arrow matrix from the same spectral information plus to an eigenvector \(x^{(n)} = (x_1, x_2,\dots, x_n)\), so that \((x^{(n)}, \lambda_n^{(n)})\) is an eigenpair of the matrix. Moreover, our results generate an algorithmic procedure to compute a solution matrix.

MSC:

65F55 Numerical methods for low-rank matrix approximation; matrix compression
65F18 Numerical solutions to inverse eigenvalue problems
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI

References:

[1] M. Bixon and J. Jortner, “Intramolecular radiationless transitions”, The Journal of chemical physics, vol. 48, no. 2, pp. 715-726, 1968, doi: 10.1063/1.1668703.
[2] M. Chu and G. Golub, Inverse eigenvalue problems: theory, algorithms, and applications. Oxford: Oxford University Press, 2005, doi: 10.1093/acprof:oso/9780198566649.001.0001. · Zbl 1075.65058
[3] E. Jessup, “A case against a divide and conquer approach to the nonsymmetric eigenvalue problema”, Applied numerical mathematics, vol. 12, no. 5, pp. 403-420, Jul. 1993, doi: 10.1016/0168-9274(93)90101-V. · Zbl 0782.65052
[4] V. Higgins and C. Johnson, “Inverse spectral problems for collections of leading principal submatrices of tridiagonal matrices”, Linear algebra and its applications, vol. 489, pp. 104-122, Jan. 2016, doi: 10.1016/j.laa.2015.10.004. · Zbl 1325.15032
[5] A. Nazari and Z. Beiranvand, “The inverse eigenvalue problem for symmetric quasi anti-bidiagonal matrices”, Applied mathematics and computation, vol. 217, no. 23, pp. 9526-9531, Aug. 2011, doi: 10.1016/j.amc.2011.03.031. · Zbl 1230.15007
[6] Z. Li, C. Bu and W. Hui, “Inverse eigenvalue problem for generalized arrow-like matrices”, Applied mathematics, vol. 2, no. 12, pp. 1443-1445, Dec. 2011, doi: 10.4236/am.2011.212204.
[7] J. Peng, X. Hu and L. Zhang, “Two inverse eigenvalue problems for a special kind of matrices”, Linear algebra and its applications , vol. 416, no. 2-3, pp. 336-347, Jul. 2006, doi: 10.1016/j.laa.2005.11.017. · Zbl 1097.65053
[8] H. Pickmann, J. Egaña and R. Soto, “Extremal inverse eigenvalue problema for bordered diagonal matrices”, Linear algebra and its applications , vol. 427, no. 2-3, pp. 256-271, Dec. 2007, doi: 10.1016/j.laa.2007.07.020. · Zbl 1144.65026
[9] H. Pickmann , J. Egaña andR. Soto , “Extreme spectra realization by real symmetric tridiagonal and real symmetric arrow matrices”, Electronic journal of linear algebra, vol. 22, pp. 780-795, 2011, doi: 10.13001/1081-3810.1474. · Zbl 1253.65057
[10] H. Pickmann , S. Arela, J. Egaña andR. Soto , “Extreme spectra realization by real nonsymmetric tridiagonal and real nonsymmetric arrow matrices”, Mathematical problems in engineering, vol. 2019, Article ID 3459017, Mar. 2019, doi: 10.1155/2019/3459017. · Zbl 1435.15014
[11] H. Najafi, S. Edalatpanah and G. Gravvanis, “An efficient method for computing the inverse of arrowhead matrices”, Applied mathematics letters, vol. 33, pp. 1-5, Jul. 2014, doi: 10.1016/j.aml.2014.02.010. · Zbl 1314.65041
[12] L. Shen and B. Suter, “Bounds for eigenvalues of arrowhead matrices and their applications to hub matrices and wireless communications”, EURASIP Journal on advances in signal processing, vol. 2009, Article ID 379402, Dec. 2019, doi: 10.1155/2009/379402. · Zbl 1192.15018
[13] W. Wanicharpichat, “Explicit minimum polynomial, eigenvector, and inverse formula for nonsymmetric arrowhead matrix”, International journal of pure and applied mathematics, vol. 108, no. 4, pp. 967-984, 2016, doi: 10.12732/ijpam.v108i4.21.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.