×

Klein tunneling through a rectangular potential barrier in a binary waveguide array. (English) Zbl 1519.81235

Summary: We analytically and numerically investigate the optical analog of the quantum relativistic Klein tunneling of a particle through a large repulsive rectangular potential barrier. This quantum relativistic model can be mimicked and analyzed by studying the propagation of a Dirac soliton in a binary waveguide array (BWA). The rectangular potential step in this platform is created by introducing a certain offset for waveguides’ refractive indices. We analytically derive the transmission coefficients of plane waves through the rectangular potential step in BWAs and also in the continuous model in free space. We demonstrate that the analytical transmission coefficient in the discrete model with BWAs is in strikingly perfect agreement with the simulations-based results.

MSC:

81Q37 Quantum dots, waveguides, ratchets, etc.
81U26 Tunneling in quantum theory
57R67 Surgery obstructions, Wall groups
81R20 Covariant wave equations in quantum theory, relativistic quantum mechanics
78A50 Antennas, waveguides in optics and electromagnetic theory
35C08 Soliton solutions
81-10 Mathematical modeling or simulation for problems pertaining to quantum theory
Full Text: DOI

References:

[1] Christodoulides, D. N.; Lederer, F.; Silberberg, Y., Nature, 424, 817 (2003)
[2] Jones, A. L., J. Opt. Soc. Amer., 55, 261 (1965)
[3] Christodoulides, D. N.; Joseph, R. I., Opt. Lett., 13, 794 (1988)
[4] Kivshar, Y. S.; Agrawal, G. P., Optical Solitons: From Fibers to Photonic Crystals (2003), Academic Press
[5] Lederer, F.; Stegeman, G. I.; Christodoulides, D. N.; Assanto, G.; Segev, M.; Silberberg, Y., Phys. Rep., 463, 1 (2008)
[6] Tran, Tr. X.; Biancalana, F., Phys. Rev. Lett., 110, Article 113903 pp. (2013)
[7] Pertsch, T.; Dannberg, P.; Elflein, W.; Bräuer, A.; Lederer, F., Phys. Rev. Lett., 83, 4752 (1999)
[8] Lenz, G.; Talanina, I.; de Sterke, C. M., Phys. Rev. Lett., 83, 963 (1999)
[9] Ghulinyan, M.; Oton, C. J.; Gaburro, Z.; Pavesi, L.; Toninelli, C.; Wiersma, D. S., Phys. Rev. Lett., 94, Article 127401 pp. (2005)
[10] Dreisow, F.; Heinrich, M.; Keil, R.; Tünnermann, A.; Nolte, S.; Longhi, S.; Szameit, A., Phys. Rev. Lett., 105, Article 143902 pp. (2010)
[11] Longhi, S., Phys. Rev. A, 81, Article 022118 pp. (2010)
[12] Dreisow, F.; Longhi, S.; Nolte, S.; Tünnermann, A.; Szameit, A., Phys. Rev. Lett., 109, Article 110401 pp. (2012)
[13] Tran, Tr. X.; Nguyen, H. M.; Duong, D. C., Phys. Rev. A, 105, Article 032201 pp. (2022)
[14] Tran, Tr. X.; Longhi, S.; Biancalana, F., Ann. Physics, 340, 179 (2014) · Zbl 1348.81248
[15] Tran, Tr. X.; Duong, D. C., Chaos, 28, Article 013112 pp. (2018) · Zbl 1390.81188
[16] Jackiw, R.; Rebbi, C., Phys. Rev. D, 13, 3398 (1976)
[17] Tran, Tr. X.; Nguyen, H. M.; Duong, D. C., Phys. Rev. A, 100, Article 053849 pp. (2019)
[18] Laughlin, R. B., Rev. Modern Phys., 71, 863 (1999) · Zbl 1205.81003
[19] Hasan, M. Z.; Kane, C. L., Rev. Modern Phys., 82, 3045 (2010)
[20] Rechtsman, M. C.; Zeuner, J. M.; Plotnik, Y.; Lumer, Y.; Podolsky, D.; Dreisow, F.; Nolte, S.; Segev, M.; Szameit, A., Nature, 496, 196 (2013)
[21] Tran, Tr. X., J. Opt. Soc. Amer. B, 36, 2559 (2019)
[22] Tran, Tr. X., Phys. Rev. A, 101, Article 063826 pp. (2020)
[23] Longhi, S., Phys. Rev. B, 81, Article 075102 pp. (2010)
[24] Dreisow, F.; Keil, R.; Tünnermann, A.; Nolte, S.; Longhi, S.; Szameit, A., Europhys. Lett., 97, 10008 (2012)
[25] Klein, O., Z. Phys., 53, 157 (1929) · JFM 55.0527.04
[26] Nitta, H.; Kudo, T.; Minowa, H., Amer. J. Phys., 67, 966 (1999)
[27] Sauter, F., Z. Phys., 69, 742 (1931) · JFM 57.1218.06
[28] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Nature, 438, 197 (2005)
[29] Katsnelson, M. I.; Novoselov, K. S.; Geim, A. K., Nat. Phys., 2, 620 (2006)
[30] Zhou, S. Y.; Gweon, G.-H.; Graf, J.; Fedorov, A. V.; Spataru, C. D.; Diehl, R. D.; Kopelevich, Y.; Lee, D.-H.; Louie, S. G.; Lanzara, A., Nat. Phys., 2, 595 (2006)
[31] Beenakker, C. W.J., Rev. Modern Phys., 80, 1337 (2008)
[32] Young, A. F.; Kim, P., Nat. Phys., 5, 222 (2009)
[33] Stander, N.; Huard, B.; Goldhaber-Gordon, D., Phys. Rev. Lett., 102, Article 026807 pp. (2009)
[34] Steele, G. A.; Gotz, G.; Kouwenhoven, L. P., Nat. Nanotechnol., 4, 363 (2009)
[35] Gerritsma, R.; Lanyon, B. P.; Kirchmair, G.; Zähringer, F.; Hempel, C.; Casanova, J.; Garcya-Ripoll, J. J.; Solano, E.; Blatt, R.; Roos, C. F., Phys. Rev. Lett., 106, Article 060503 pp. (2011)
[36] Jiang, X.; Shi, C.; Li, Z.; Wang, S.; Wang, Y.; Yang, S.; Louie, S. G.; Zhang, X., Science, 370, 1447 (2020)
[37] Bahat-Treidel, O.; Peleg, O.; Grobman, M.; Shapira, N.; Segev, M.; Pereg-Barnea, T., Phys. Rev. Lett., 104, Article 063901 pp. (2010)
[38] Bahat-Treidel, O.; Segev, M., Phys. Rev. A, 84, Article 021802 pp. (2011)
[39] Nguyen-The, Q.; Tran, Tr. X., J. Opt. Soc. Amer. B, 37, 1911 (2020)
[40] Tran, M. C.; Nguyen-The, Q.; Do, C. C.; Tran, Tr. X., Phys. Rev. A, 105, Article 023523 pp. (2022)
[41] Calogeracos, A.; Dombey, N., Contemp. Phys., 40, 313 (1999)
[42] Allain, P. E.; Fuchs, J. N., Eur. Phys. J. B, 83, 301 (2011)
[43] Sukhorukov, A. A.; Kivshar, Y. S., Opt. Lett., 27, 2112 (2002)
[44] Longhi, S., Opt. Lett., 35, 235 (2010)
[45] Greiner, W., Relativistic Quantum Mechanics (1990), Springer-Verlag: Springer-Verlag Berlin, Chap. 13 · Zbl 0718.35078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.