×

Closed-form solution for elliptical inclusion problem in antiplane piezoelectricity with far-field loading at an arbitrary angle. (English) Zbl 1406.74222

Summary: An elliptical piezoelectric inclusion embedded in an infinite piezoelectric matrix is analyzed in the framework of linear piezoelectricity. Using the conformal mapping technique, a closed-form solution is obtained for the case of a far-field antiplane mechanical load, \(\tau_0\), and an inplane electrical load, \(E_0\), at an arbitrary angle \(\beta\). The stress and electric field distribution patterns for different defect shapes, loading angles, and material constants are studied. The energy release rates of self-similarly expanding and rotating defects in the presence of an electric field are obtained using the generalized \(M\)- and \(L\)-integrals as a function of the loading angle. The physical significance of these results is discussed in terms of the stress and electric field distributions as well as the energy release rates.

MSC:

74F15 Electromagnetic effects in solid mechanics
74E30 Composite and mixture properties
78A30 Electro- and magnetostatics
Full Text: DOI

References:

[1] Berlincourt, D. A.; Curran, D. R.; Jaffe, H., Piezoelectric and piezomagnetic materials and their function in transducers, (. Mason, W. P., Phycl. Acoust. 1A, (1964), Academic Press New York), 177
[2] Chao, L. P.; Huang, J. H., On a piezoelectric material containing a permeable elliptical crack, Int. J. Solids Struct., 37, 5161-5176, (2000) · Zbl 0977.74022
[3] Chen, Y. Z.; Lee, K. Y., Analysis of the M-integral in plane elasticity, ASME J. Appl. Mech., 71, 572-574, (2004) · Zbl 1111.74363
[4] Chung, M. Y.; Ting, T. C.T., Piezoelectric solid with elliptical inclusion or hole, Int. J. Solids Struct., 33, 23, 3341-3361, (1996) · Zbl 0901.73064
[5] Crawley, E. F.; de Luis, J., Use of piezoelectric actuators as elements of intelligent structures, AIAA J., 25, 1373-1385, (1987)
[6] Deeg, W.F., 1980. The Analysis of Dislocation, Crack, and Inclusion Problems in Piezoelectric Solids. Ph.D. thesis, Stanford University, Stanford, California.
[7] Eischen, J. W.; Herrmann, G., Energy release rates and related balance laws in linear elastic defect mechanics, J. Appl. Mech., 54, 2, 388-392, (1987) · Zbl 0613.73003
[8] Freiman, S. W.; Pohanka, R. C., Review of mechanically related failures of ceramic capacitors and capacitor materials, J. Am. Ceram. Soc., 72, 12, 2258-2263, (1989)
[9] Freund, L. B., Stress-intensity factor calculations based on a conservational integral, Int. J. Solids Struct., 14, 241-249, (1978)
[10] Fuller, C. R., Active control of sound transmission through elastic plates using piezoelectric actuators, AIAA J., 29, 1771-1777, (1992) · Zbl 0729.76560
[11] Gong, S. X.; Meguid, S. A., A general treatment of the elastic field of an elliptical inhomogeneity under antiplane shear, ASME J. Appl. Mech., 59, S131-S135, (1992) · Zbl 0760.73007
[12] Gunther, W., Uber einige randintegrale der elastomechanik, in adhandlungen der braunschweigischen wisssenschaftlichen. gesellschaft, XIV, (1962), Verlag Friedr Vieweg, Braunschweig · Zbl 0149.42703
[13] Hui, T.; Chen, Y. H., The M-integral analysis for a nano-inclusion in plane elastic materials under uni-axial or bi-axial loadings, J. Appl. Mech., 77, 210-219, (2010)
[14] Knowles, J. K.; Sternberg, E., On a class of conservation laws in linearized and finite elastostatics, Arch. Ratnl. Mech. Anls, 44, 187-211, (1972) · Zbl 0232.73017
[15] Koepke, B. G.; McHenry, K. D.; Seifried, L. M.; Stokes, R. J., Mechanical integrity of piezoelectric and dielectric ceramics, (1986), IEEE Ultrasonic Symposium, Williamsburg, Virginia
[16] Levin, V. M.; Michelitsch, Th.; Sevostianov, I., Spheroidal inhomogeneity in a transversely isotropic piezoelectric medium, Arch. Appl. Mech., 70, 673-693, (2000) · Zbl 1013.74027
[17] Li, Q.; Chen, Y. H., Surface effect and size dependent on the energy release due to nanosized hole expansion in plane elastic materials, ASME J. Appl. Mech., 75, (2008), 061008(1-5)
[18] McMeeking, R. M., Towards a fracture mechanics for brittle piezoelectric and dielectric materials, Int. J. Fract., 108, 25-41, (2001)
[19] Meguid, S. A.; Zhong, Z., On the elliptical inhomogeneity problem in pieozelectric materials under antiplane shear and inplane electric field, Int. J. Eng. Sci., 36, 3, 329-344, (1998)
[20] Mishra, D.; Yoo, S. H.; Park, C. Y.; Pak, Y. E., Elliptical inclusion problem in antiplane piezoelectricity: stress concentrations and energy release rates, Int. J. Fract., 179, 213-220, (2013)
[21] Pak, Y. E., Crack extension force in a piezoelectric material, ASME J. Appl. Mech., 57, 647-653, (1990) · Zbl 0724.73191
[22] Pak, Y. E., Circular inclusion problem in antiplane piezoelectricity, Int. J. Solids Struct., 29, 2403-2419, (1992) · Zbl 0764.73069
[23] Pak, Y. E., Piezoelectric elliptical inclusion under longitudinal shear. mechanics and materials for electronic packaging: coupled field behavior in materials, ASME-AMD, 193, 263-268, (1994)
[24] Pak, Y. E., Elliptical inclusion problem in antiplane piezoelectricity: implications for fracture mechanics, Int. J. Eng. Sci., 48, 209-222, (2010)
[25] Pak, Y. E.; Mishra, D.; Yoo, S. H., Closed-form solution for a coated circular inclusion under uniaxial tension, Act. Mech., 223, 5, 937-951, (2012) · Zbl 1401.74060
[26] Reay, N. K.; Pietraszewski, K. A.R. B., Liquid-nitrogen cooled servo-stabilized Fabry-Perot interferometer for the infrared, Opt. Eng., 31, 1667-1670, (1992)
[27] Rice, J. R., A path-independent integral and the approximate analysis of strain concentration by notches and cracks, J. Appl. Mech., 35, 379, (1968)
[28] Shen, M. H.; Chen, S. N.; Chen, F. M., Piezoelectric study on confocally multicoated elliptical inclusion, Int. J. Eng. Sci., 43, 1299-1312, (2005)
[29] Sosa, H., Plane problems in piezoelectric media with defects, Int. J. Solids Struct., 28, 491-505, (1991) · Zbl 0749.73070
[30] Sosa, H.; Khutoryansky, N., New development concerning piezoelectric materials with defects, Int. J. Solids Struct., 33, 3399-3414, (1996) · Zbl 0924.73198
[31] Sudak, L. J., Effect of an interphase layer on the electroelastic stresses within a three-phase elliptic inclusion, Int. J. Eng. Sci., 41, 1019-1039, (2003)
[32] Tobin, A.; Pak, Y. E., Effect of electric fields on fracture behavior of PZT ceramics, Procd. SPIE Conf. on Smart Struct. Mat., vol. 1916, (1993), pp. 78-86
[33] Wang, J.; Landis, C., Effects of in-plane electric fields on the toughening behavior of ferroelectric ceramics, J. Mech. Mat. Struct., 1, 6, 1075-1095, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.