×

Nonlinear analysis and elastic-plastic load-carrying behaviour of thin- walled spatial beam structures with warping constraints. (English) Zbl 0586.73119

An analysis of the elastic-plastic load-carrying behaviour of thin-walled spatial beam structures is presented. It is based on a beam theory valid for large displacements and rotations, which admits arbitrary cross- sections, curved axes, initial imperfections, a general material description, and which fully accounts for the influence of warping constraints as well as the stress-history dependence of the elastic- plastic shear moduli. An incremental updated Lagrangian viewpoint is adopted in the derivation of the basic beam equations from a generalized variational principle, and in the numerical solution procedure the displacement-finite element approach is followed. The associated tangential stiffness matrices are obtained by direct numerical integration of the governing incremental differential equations rather than through the use of shape functions in connection with a virtual work principle. Applications of the theory are given in which the influence of the loading configuration, material parameters, geometric nonlinearities and warping constraints on the load-carrying behaviour and on the bifurcation and ultimate loads of thin-walled beam structures is explored.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74R20 Anelastic fracture and damage
Full Text: DOI

References:

[1] Thompson, Eng. Optim. 1 pp 99– (1974)
[2] Bathe, Int j. numer. methods eng. 14 pp 961– (1979)
[3] Yang, Int. j. numer. methods, eng. 20 pp 851– (1984)
[4] and , ’Large spatial deformations of rods using generalized variational principles’, in Nonlinear Finite Element Analysis in Structural Mechanics, Proc. Europe-U.S. Workshop, Ruhr-Universität Bochum, Bochum, W. Germany, July 1980 ( and , Eds.), Springer Verlag, Berlin. 1981, pp. 185-216. · doi:10.1007/978-3-642-81589-8_11
[5] and , ’Large deflections and stability of thin-walled beam structures’, in Stability in the Mechanics of Continua, Proc. 2nd IUTAM Symp., Nümbrecht, W. Germany, Aug. 1981 (Ed.), Springer Verlag, Berlin, 1982, pp. 165-184. · doi:10.1007/978-3-642-81811-0_15
[6] ’Große Verschiebungen und elasto-plastisches Tragverhalten von ebenen und raümlichen Stabtragwerken (Large displacements and elasto-plastic load-carrying behaviour of plane and spatial beam-structures)’, Mitteilung Nr. 84-2, Techn. Wiss. Mitt., Inst. f. Konst. Ing. Bau, Ruhr-Universität Bochum, (April 1984).
[7] and , ’Tragsicherheit räumlich beanspruchter Stabtragwerke (Load-carrying capacity of spatially loaded beam systems)’, in Finite Element: Anwendungen in der Baupraxis ( and , Eds.), Verl. W. Ernst, Berlin, 1985, pp. 461-473.
[8] and , ’The influence of warping constraints on the nonlinear load-carrying capacity of spatially-loaded beam systems’, in NUMETA 85: Numerical Methods in Engineering: Theory and Practice ( and , Eds.), Balkema, Rotterdam, 1985, pp. 601-608.
[9] and , Biegetorsionsprobleme gerader dünnwandiger Stäbe (Bending and Torsion of Straight Thin-Walled Beams), Verl. W. Ernst, Berlin, 1972.
[10] ’Finite displacements of thin-walled beams’, DCAMM Reports Nos. 252, 253, Danish Centre for Applied Mathematics and Mechanics, Tech. Univ of Denmark, Lyngby (1982).
[11] Reissner, J. Appl. Math. Phys. (ZAMP) 34 pp 247–
[12] and , ’Ultimate load analysis of three-dimensional beam structures with thin-walled cross sections using finite elements’, in Stability of Metal Structures, Proc. Third Int. Coll., Paris (Sep. 1983).
[13] ’Differential system and Übertragungsmatrizen der Biegetheorie allgemeiner Rotationsschalen (System of differential equations and transfer matrices of the bending theory of general shells of revolution), Dissert. Tech. Hochschule’, Hannover (1966).
[14] and , ’Application of ring elements in the nonlinear analysis of shells of revolution under nonaxisymmetric loading’, in Proc. FENOMECH 84, 3rd Int. Conf. on Finite Elements in Nonlinear Mechanics, Inst. f. Statik, u. Dynamik d. Luft und Raumfahrtkonstruktionen, Universität Stuttgart (Sep. 1984).
[15] de Veubeke, Int. J. Eng. Sci. 10 pp 745– (1972)
[16] Murakawa, Comp. Struct. 13 pp 11– (1981)
[17] ’Zur computerorientierten Formulierung von Stabilitätsproblemen (On a computer-oriented formulation of stability problems)’, in Konstruktiver Ingenieurbau in Forschung und Praxis–Festschrift W. Zerna und Institut KIB (, and , Eds.), Werner Verlag, Düsseldorf, 1976, pp. 111-119.
[18] ’Incremental formulation for geometrically nonlinear problems’, in Formulations and Computational Algorithms in Finite-Element-Analysis ( and , Eds.), MIT Press, Cambridge, Mass., 1977, pp. 193-240.
[19] Wunderlich, Bauingenieur 52 pp 225– (1977)
[20] Bornscheuer, D. Stahlbau 21 pp 1– (1952)
[21] and , ’Biegedrillknicken–Erläuterungen, Versuche, Beispiele (Buckling in bending and torsion–comments, experiments, examples)’, Heft 10, Berichte aus Forschung und Entwicklung, Dt. Ausschuß für Stahlbau, Köln (1980).
[22] Lindner, D. Stahlbau 53 pp 69– (1984)
[23] Roorda, J. Eng. Mech. Div., ASCE 91 pp 87– (1965)
[24] ’An experience in equilibrium and stability’, in Experimental Analysis of Instability Problems on Reduced and Full-Scale Models, Proc. Int. RILEM Symp., Buenos Aires, Argentina, 551-591 (Sep. 1971).
[25] ’Post-buckling analysis of a simple two-bar frame’, in Recent Developments in Applied Mechanics–The Folke Odqvist Volume, ( et al., Eds.), Almqvist and Wiksell, Stockholm, 1967, pp. 337-354.
[26] Kounadis, J. Appl. Mech. 44 pp 701– (1977) · doi:10.1115/1.3424160
[27] and , ’Post-buckling analysis of a simple two-bar frame with clamped ends’, Report No. 721, Lab. of Engineering Mechanics, Dept. of Mechanical Engineering, Delft Univ. of Technology (Feb. 1982).
[28] Besseling, Camp. Meth. Appl. Mech. Eng. 12 pp 97– (1977)
[29] Olesen, Comp. Struct. 15 pp 157– (1982)
[30] Byskov, J. Struct. Mech. 10 pp 311– (1982) · doi:10.1080/03601218208907415
[31] Onat, J. Aeron. Sci. 20 pp 181– (1953) · doi:10.2514/8.2585
[32] ’Plastic buckling’, in Advances in Applied Mechanics, Vol. 14 (Ed.), Academic Press, New York, 1974, pp. 67-146.
[33] and , ’Analytical and numerical study of the effects of initial imperfections on the inelastic buckling of a cruciform column’, in Buckling of Structures, Proc. IUTAM Symp. Cambridge, 1974 (Ed.), Springer Verlag, Berlin, 1976, pp. 98-105. · doi:10.1007/978-3-642-50992-6_10
[34] and , ’Aspects of plastic post-buckling behaviour’, in Mechanics of Solids–The Rodney Hill 60th Anniversary Volumeapos; ( and , Eds.), Pergamon Press, Oxford. 1981.
[35] ’Elastic-plastic buckling of a finite length cruciform column’, DCAMM Rep. No. 246, Danish Centre of Appl. Math. and Mech., Tech. Univ. of Denmark, Lyngby (1982).
[36] Christoffersen, J. Mech. Phys. Solids 27 pp 465– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.