×

Theta functions on the Kodaira-Thurston manifold. (English) Zbl 1211.53093

The authors construct generalized \(\vartheta\)-functions on the Kodaira-Thurston manifold \(M\) [K. Kodaira, ”On the structure of compact complex analytic surfaces. I.” Am. J. Math. 86, 751–798 (1964; Zbl 0137.17501)]. \(M\) is a compact, 4-dimensional nilmanifold which is symplectic and complex, but not Kähler [W. P. Thurston, Proc. Am. Math. Soc. 55, 467–468 (1976; Zbl 0324.53031)]. This construction is relevant in the context of the almost Kähler quantization [D. Borthwick and A. Uribe, Math. Res. Lett. 3, No. 6, 845–861 (1996; Zbl 0872.58030)]. Here \(M:=\Gamma\backslash G\), where \(G=\text{Heis}(3)\times\mathbb{R}\), \(\text{Heis}(3)\) is the real 3-dimensional Heisenberg group, while \(\Gamma\) is the integer lattice in \(G\). The left-invariant symplectic form on \(G\) descends to a symplectic \(\omega\) form on \(M\). The Hamiltonians of right-invariant vector fields form a Lie algebra \(\tilde{\mathfrak{g}}\), the central extension of the Lie algebra \(\mathfrak{g}\) of \(G\). The corresponding simply connected Lie group is \(\tilde{G}=G\rtimes\mathbb{R}\) such that \(\tilde{G}\) acts on \(M\) in a Hamiltonian fashion. The principal circle bundle \(P:=\tilde{\Gamma}\backslash\tilde{G}\rightarrow M\), where the lattice \(\tilde{\Gamma}\) covers \(\Gamma\), has a natural connection whose curvature is the symplectic form \(\omega\) on \(M\) and let \( \ell\rightarrow M\) denote the associated prequantization line bundle. There is a right quasiregular representation \(\rho\) of \(\tilde{G}\) on \(L^2(M,\ell)\). It is shown that \(\rho\) decomposes into a direct sum of unitary irreducible representations \(\pi_k : \tilde{G}\rightarrow\text{End}(V_k)\), as \(L^2(M,\ell^{\otimes k})\simeq 4k^2V_k\). Each representation spaces \(V_k\) is isomorphic to \(L^2(H\backslash\tilde{G})\), where \(H\) is any choice of a certain family of subgroups of \(\tilde{G}\), those with Lie algebra is subordinate to certain coadjoint Kirillov orbit. A theorem gives the maps \(\theta^j_k:V_k\rightarrow L^2(H\backslash\tilde{G})\) – called the periodizing maps – which generalize the Weil maps [A. Weil, Acta Math. 111, 143–211 (1964; Zbl 0203.03305)]. Given \(\phi\in L^2(H\backslash \tilde{G})\), the periodized image \(\theta^j_k\phi\in\Gamma(M,\ell^{\otimes k})\) lifts to a periodic function \(\vartheta^j_k \phi:G\rightarrow \mathbb{C}\). Then a left-invariant metric on \(G\) is chosen. Associated to the resulting metric on \(M\) there is the Laplacian \(\Delta^{(k)}\) acting on \(\Gamma(\ell^{\oplus k})\), and \(\Delta^{(k)}\) induces a Laplacian \(\Delta_k\) on \(V_k\). Finally, for each \(k\in\mathbb{N}\), there is constructed explicitly a family of maps \(\left\{\theta^{m,n}_k:L^2(\mathbb{R}^2)\rightarrow L^2(M,\ell^{\oplus k}), m,n=0,1,\dots,2k-1 \right\}\) such that \(L^2(M,\ell^{\oplus k}) \simeq\bigoplus_{m,n=0}^{2k-1}\theta^{m,n}_k(L^2(\mathbb{R}^2))\) is an orthogonal decomposition of \(L^2(M,\ell^{\oplus k})\) into irreducible \(\tilde{G}\)-spaces. If \(f:\mathbb{R}^2\rightarrow\mathbb{C}\) is square integrable function, then \(\vartheta^{m,n}_kf\in L^2(\mathbb{R}^4,\mathbb{C})\) verify 4 pseudoperiodicity conditions. It is shown that if \(\psi_0\) is the unique ground state solution of the second-order elliptic operator differential operator \(\Delta_k:=\partial_{xx}-\partial_{tt}+16k^2\pi^2(x^2+t^2) +16k^2\pi^2x^2(x^2/4-t)\), then the images \(\vartheta^{m,n}_k\psi_0\), \(m,n=0,1, \dots, 2k-1\) are \(\vartheta\)-functions associated to the Kodaira-Thurston manifold and form a basis for the almost Kähler quantization of \(M\). The paper is almost selfcontained, including a nice presentation of the classical theory of \(\vartheta\)-functions, geometric quantization [N. Woodhouse, Geometric quantization. Oxford: Oxford Mathematical Monographs (1980: Zbl 0458.58003)] and other theorems used in the construction.

MSC:

53D05 Symplectic manifolds (general theory)
53D50 Geometric quantization
11F27 Theta series; Weil representation; theta correspondences
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] L. Auslander and J. Brezin, Translation-invariant subspaces in \?² of a compact nilmanifold. I, Invent. Math. 20 (1973), 1 – 14. · Zbl 0259.22016 · doi:10.1007/BF01405260
[2] Louis Auslander and Richard Tolimieri, Abelian harmonic analysis, theta functions and function algebras on a nilmanifold, Lecture Notes in Mathematics, Vol. 436, Springer-Verlag, Berlin-New York, 1975. · Zbl 0321.43012
[3] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren Text Editions, Springer-Verlag, Berlin, 2004. Corrected reprint of the 1992 original. · Zbl 1037.58015
[4] Jonathan Brezin, Harmonic analysis on nilmanifolds, Trans. Amer. Math. Soc. 150 (1970), 611 – 618. · Zbl 0205.13203
[5] David Borthwick and Alejandro Uribe, Almost complex structures and geometric quantization, Math. Res. Lett. 3 (1996), no. 6, 845 – 861. · Zbl 0872.58030 · doi:10.4310/MRL.1996.v3.n6.a12
[6] Laurent Charles and San Vũ Ngá»\?c, Spectral asymptotics via the semiclassical Birkhoff normal form, Duke Math. J. 143 (2008), no. 3, 463 – 511. · Zbl 1154.58015 · doi:10.1215/00127094-2008-026
[7] Paolo de Bartolomeis and Adriano Tomassini, On the Maslov index of Lagrangian submanifolds of generalized Calabi-Yau manifolds, Internat. J. Math. 17 (2006), no. 8, 921 – 947. · Zbl 1115.53053 · doi:10.1142/S0129167X06003710
[8] Marisa Fernández, Mark J. Gotay, and Alfred Gray, Compact parallelizable four-dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1209 – 1212. · Zbl 0656.53034
[9] Jan Gutowski, Stefan Ivanov, and George Papadopoulos, Deformations of generalized calibrations and compact non-Kähler manifolds with vanishing first Chern class, Asian J. Math. 7 (2003), no. 1, 39 – 79. · Zbl 1089.53034 · doi:10.4310/AJM.2003.v7.n1.a4
[10] V. Guillemin and A. Uribe, The Laplace operator on the \?th tensor power of a line bundle: eigenvalues which are uniformly bounded in \?, Asymptotic Anal. 1 (1988), no. 2, 105 – 113. · Zbl 0649.53026
[11] Carl G. J. Jacobi, Fundamenta nova theoriae functionum ellipticarum, Regiomonti, Sumtibus fratrum Borntraeger, Königsberg, Germany, 1829, Reprinted in Gesammelte Mathematische Werke, Band. 1. Providence, RI: Amer. Math. Soc., pp. 97-239, 1969.
[12] A. A. Kirillov, Lectures on the orbit method, Graduate Studies in Mathematics, vol. 64, American Mathematical Society, Providence, RI, 2004. · Zbl 1229.22003
[13] K. Kodaira, On the structure of compact complex analytic surfaces. I, Amer. J. Math. 86 (1964), 751 – 798. · Zbl 0137.17501 · doi:10.2307/2373157
[14] Calvin C. Moore, Representations of solvable and nilpotent groups and harmonic analysis on nil and solvmanifolds, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 3 – 44.
[15] Shigeyuki Morita, Geometry of characteristic classes, Translations of Mathematical Monographs, vol. 199, American Mathematical Society, Providence, RI, 2001. Translated from the 1999 Japanese original; Iwanami Series in Modern Mathematics. · Zbl 0976.57026
[16] Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. · Zbl 1066.53137
[17] David Mumford, Tata lectures on theta. I, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C. Musili, M. Nori, E. Previato and M. Stillman; Reprint of the 1983 edition. · Zbl 1112.14002
[18] David Mumford, Tata lectures on theta. II, Progress in Mathematics, vol. 43, Birkhäuser Boston, Inc., Boston, MA, 1984. Jacobian theta functions and differential equations; With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. · Zbl 0549.14014
[19] David Mumford, Tata lectures on theta. III, Progress in Mathematics, vol. 97, Birkhäuser Boston, Inc., Boston, MA, 1991. With the collaboration of Madhav Nori and Peter Norman. · Zbl 0744.14033
[20] Yuichi Nohara, Projective embeddings and Lagrangian fibrations of abelian varieties, Math. Ann. 333 (2005), no. 4, 741 – 757. · Zbl 1084.53071 · doi:10.1007/s00208-005-0685-8
[21] Alexander Polishchuk, Abelian varieties, theta functions and the Fourier transform, Cambridge Tracts in Mathematics, vol. 153, Cambridge University Press, Cambridge, 2003. · Zbl 1018.14016
[22] Leonard F. Richardson, Decomposition of the \?²-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173 – 190. · Zbl 0265.43012 · doi:10.2307/2373456
[23] W. P. Thurston, Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), no. 2, 467 – 468. · Zbl 0324.53031
[24] Adriano Tomassini and Luigi Vezzoni, On symplectic half-flat manifolds, Manuscripta Math. 125 (2008), no. 4, 515 – 530. · Zbl 1167.53032 · doi:10.1007/s00229-007-0158-3
[25] André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143 – 211 (French). · Zbl 0203.03305 · doi:10.1007/BF02391012
[26] Nicholas Woodhouse, Geometric quantization, The Clarendon Press, Oxford University Press, New York, 1980. Oxford Mathematical Monographs. · Zbl 0458.58003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.