×

A novel protocol for bidirectional controlled quantum teleportation of two-qubit states via seven-qubit entangled state in noisy environment. (English) Zbl 1433.81048

Summary: In this paper, a novel protocol of bidirectional controlled quantum teleportation (BCQT) via seven-qubit state is proposed. Where Alice and Bob, two legitimate users, can teleport two-qubit states to each other. In the whole process, users achieve the initial state based on preprocessing of quantum channel, Bell-state measurement (BSM), single-qubit measurement (SM), unitary operations and so on. The main superiority of the proposed protocol is more efficient compared with previous work. In addition, the proposed protocol is considered in noisy channel, it shows that the fidelities under amplitude-damping (AD) and phase-damping (PD) noise only rest with the amplitude parameter of the initial state and the decoherence noisy rate.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81Q93 Quantum control
81P40 Quantum coherence, entanglement, quantum correlations
81S22 Open systems, reduced dynamics, master equations, decoherence
94A62 Authentication, digital signatures and secret sharing
Full Text: DOI

References:

[1] Bennett, Charles H.; Brassard, Gilles; Crépeau, Claude; Jozsa, Richard; Peres, Asher; Wootters, William K., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters, 70, 13, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Zhou, Rg; Qian, C.; Ian, H., Bidirectional quantum teleportation of two-qubit state via four-qubit cluster state, Int. J. Theor. Phys., 58, 150-156 (2019) · Zbl 1412.81083 · doi:10.1007/s10773-018-3919-8
[3] Huang, Sm, Bidirectional quantum controlled teleportation by using a seven-qubit entangled state, Int. J. Theor. Phys., 55, 380-383 (2016) · Zbl 1335.81046 · doi:10.1007/s10773-015-2670-7
[4] Jiang, Sfm, Bidirectional and asymmetric controlled quantum information transmission via five-qubit Brown state, International., 56, 1530-1536 (2017) · Zbl 1366.81089 · doi:10.1007/s10773-017-3292-z
[5] Duan, Yj; Zha, Xw; Sun, Xm; Xia, Jf, Bidirectional quantum controlled teleportation via a six-qubit entangled state, Int. J. Theor. Phys., 53, 3780-3786 (2014) · Zbl 1307.81022 · doi:10.1007/s10773-014-2131-8
[6] Hu, T.; Xue, K.; Sun, C.; Wang, G.; Ren, H., Quantum teleportation and dense coding via topological basis, Quantum Inf. Process, 12, 3369-3381 (2013) · Zbl 1283.81023 · doi:10.1007/s11128-013-0614-9
[7] Zha, Xw; Zou, Zc; Qi, Jx; Song, Hy, Bidirectional quantum controlled teleportation via five-qubit cluster state, Int. J. Theor. Phys., 52, 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[8] Chen, Y., Bidirectional controlled quantum teleportation by using five-qubit entangled state, Int. J. Theor. Phys., 53, 1454-1458 (2014) · Zbl 1304.81050 · doi:10.1007/s10773-013-1943-2
[9] Tan, X.; Zhang, X.; Song, T., Deterministic quantum teleportation of a particular six-qubit state using six-qubit cluster state, Int. J. Theor. Phys., 55, 155-160 (2016) · Zbl 1335.81047 · doi:10.1007/s10773-015-2645-8
[10] Zhou, R-G; Xu, R.; Lan, H., Bidirectional quantum teleportation by using six-qubit cluster state, IEEE Access, 7, 1 (2019) · doi:10.1109/ACCESS.2019.2901960
[11] Duan, Yj; Zha, Xw; Sun, Xm; Xia, Jf, Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state, Int. J. Theor. Phys., 53, 2697-2707 (2014) · Zbl 1308.81045 · doi:10.1007/s10773-014-2065-1
[12] Hong, Wq, Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state, Int. J. Theor. Phys., 55, 384-387 (2016) · Zbl 1335.81041 · doi:10.1007/s10773-015-2671-6
[13] Sadeghi Zadeh, Ms; Houshmand, M.; Aghababa, H., Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a Quantum Channel, Int. J. Theor. Phys., 56, 2101-2112 (2017) · Zbl 1383.81048 · doi:10.1007/s10773-017-3353-3
[14] Chen, Y.; Du, J.; Liu, S.; Wang, X., Cyclic quantum teleportation, Quantum Inf. Process, 16, 1-9 (2017) · Zbl 1387.81100 · doi:10.1007/s11128-017-1648-1
[15] Sang, Z., Cyclic controlled teleportation by using a seven-qubit, Int. J. Theor. Phys., 57, 3835-3838 (2018) · Zbl 1412.81059 · doi:10.1007/s10773-018-3895-z
[16] Sisodia, M.; Shukla, A.; Thapliyal, K.; Pathak, A., Design and experimental realization of an optimal scheme for teleportation of an n -qubit quantum state, Quantum Inf. Process, 16, 1-19 (2017) · doi:10.1007/s11128-017-1744-2
[17] Sabir, Djm, Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states, Quantum Inf. Process, 17, 1-11 (2018) · Zbl 1448.81194 · doi:10.1007/s11128-018-1937-3
[18] Yang, Guang; Lian, Bao-Wang; Nie, Min; Jin, Jiao, Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement, Chinese Physics B, 26, 4, 040305 (2017) · doi:10.1088/1674-1056/26/4/040305
[19] Hou, K.; Bao, Dq; Zhu, Cj; Yang, Yp, Controlled teleportation of an arbitrary two-qubit entanglement in noises environment, Quantum Inf. Process, 18, 1-19 (2019) · Zbl 1417.81061 · doi:10.1007/s11128-019-2218-5
[20] Li, Yh; Jin, Xm, Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments, Quantum Inf. Process, 15, 929-945 (2016) · Zbl 1333.81080 · doi:10.1007/s11128-015-1194-7
[21] Sun, Yr; Xu, G.; Chen, Xb; Yang, Y.; Yang, Yx, Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in Noisy environment, IEEE Access., 7, 2811-2822 (2019) · doi:10.1109/ACCESS.2018.2885340
[22] Sarvaghad-Moghaddam, M.: Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. Quantum Phys. (2018) · Zbl 1450.81021
[23] Liang, X-T; Fan, H-Y, Entanglement-assisted classical capacities of some single qubit quantum Noisy channels, Mod. Phys. Lett. B., 16, 441-448 (2002) · Zbl 1079.81506 · doi:10.1142/s0217984902003890
[24] Search, H., Journals, C., Contact, A., Iopscience, M., Address, I.P.: Enhanced Multiparty Controlled QSDC Using GHZ State. 1007, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.