×

Controlled bidirectional quantum teleportation of arbitrary single qubit via a non-maximally entangled state. (English) Zbl 1450.81018

Summary: Because of the decoherence induced by surrounding environments, the maximally entangled state is usually difficult to prepare and maintain. In this study, a teleportation scheme was developed using a five-qubit non-maximally entangled state as the quantum channel. With Charlie’s permission, Alice and Bob could teleport a single-qubit state to each other deterministically. The scheme was introduced in a noiseless environment first. As we all know, when a non-maximally entangled state was used as the quantum channel, teleportation might fail, and the state to be transmitted would be destroyed. To solve this problem, in this scheme, an appropriate unitary tranasformation was performed on the non-maximally entangled state in advance with the help of an auxiliary qubit. Then, we analyzed the influence of the quantum noise on the fidelity of the desired state using the example of amplitude damping during the qubit distribution. Finally, we utilized the weak measurement and the corresponding reversing measurement to increase fidelity. The results showed that the weak measurement was an effective method for enhancing teleportation.

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81S22 Open systems, reduced dynamics, master equations, decoherence
81P47 Quantum channels, fidelity
81P15 Quantum measurement theory, state operations, state preparations
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] Li, Y., Zhou, R.-G., Xu, R., Luo, J., Hu, W.: A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 5, 044003 (2020). 10.1088/2058-9565/ab9f93
[2] Y. Li, R. Zhou, R. Xu, J. Luo and S. Jiang. A quantum mechanics-based framework for EEG signal feature extraction and classification, IEEE Trans. Emerg. Top. Comput., 10.1109/TETC.2020.3000734
[3] Li, H-S; Fan, P.; Xia, H.; Peng, H.; Long, G-L, Efficient quantum arithmetic operation circuits for quantum image processing, Science China-Physics Mechanics & Astronomy, 63, 8, 280311 (2020) · doi:10.1007/s11433-020-1582-8
[4] Bennett, CH; Brassard, G.; Jozsa, R.; Peres, A.; Wootters, WK; Crépeau, C., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899 (2002) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[5] Bouwmeester, D.; Mattle, K.; Pan, JW; Weinfurter, H.; Zeilinger, A.; Zukowski, M., Experimental quantum teleportation of arbitrary quantum states, Appl. Phys. B Lasers Opt., 67, 749-752 (1998) · doi:10.1007/s003400050575
[6] Furusawa, A.; Sorensen, J.; Braunstein, S.; Fuchs, C.; Kimble, H.; Polzik, E., Unconditional quantum teleportation, Science, 282, 706-709 (1998) · doi:10.1126/science.282.5389.706
[7] Li, Y.; Tu, J.; Wen, K.; Zhao, Y.; Xu, J., A coherent receiver based on SIM for quantum communication, IEEE Photon. Technol. Lett., 30, 27-30 (2017) · doi:10.1109/LPT.2016.2625042
[8] Roy, S.; Ghosh, B., A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord, Quantum Inf. Process, 16, 1-13 (2017) · Zbl 1373.81081 · doi:10.1007/s11128-017-1557-3
[9] Joy, D.; Sabir, M., Efficient schemes for the quantum teleportation of a sub-class of tripartite entangled states, Quantum Inf. Process, 17, 1-11 (2018) · Zbl 1448.81194 · doi:10.1007/s11128-018-1937-3
[10] Jiang, LN, Quantum teleportation under different collective noise environment, Int. J. Theor. Phys., 58, 522-530 (2019) · Zbl 1416.81040 · doi:10.1007/s10773-018-3951-8
[11] Sang, MH; Dai, HL, Controlled teleportation of an arbitrary three-qubit tate by using two four-qubit entangled states, Int. J. Theor. Phys., 53, 1930-1934 (2014) · Zbl 1298.81041 · doi:10.1007/s10773-014-1997-9
[12] Hou, K.; Bao, DQ; Zhu, CJ; Yang, YP, Controlled teleportation of an arbitrary two-qubit entanglement in noises environment, Quantum Inf. Process., 18, 104 (2019) · Zbl 1417.81061 · doi:10.1007/s11128-019-2218-5
[13] Zhou, RG; Xu, R.; Lan, H., Bidirectional quantum teleportation by using six-qubit cluster state, IEEE Access., 7, 44269-44275 (2019) · doi:10.1109/ACCESS.2019.2901960
[14] Zhou, R-G; Qian, C.; Ian, H., Cyclic and bidirectional quantum teleportation via pseudo multi-qubit states, IEEE Access., 7, 42445-42449 (2019) · doi:10.1109/ACCESS.2019.2907963
[15] Zadeh, MSS; Houshmand, M.; Aghababa, H., Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel, Int. J. Theor. Phys., 57, 175-183 (2018) · Zbl 1387.81137 · doi:10.1007/s10773-017-3551-z
[16] Yang, G., Lian, B.W., Nie, M., Jin, J.: Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement. Chinese Phys. B. 26, (2017)
[17] Zhang, D.; Zha, XW; Li, W.; Yu, Y., Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state, Quantum Inf. Process, 14, 3835-3844 (2015) · Zbl 1327.81113 · doi:10.1007/s11128-015-1067-0
[18] Hassanpour, S.; Houshmand, M., Bidirectional teleportation of a pure EPR state by using GHZ states, Quantum Inf. Process, 15, 905-912 (2016) · Zbl 1333.81073 · doi:10.1007/s11128-015-1096-8
[19] Li, YH; Li, XL; Sang, MH; Nie, YY; Wang, ZS, Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state, Quantum Inf. Process, 12, 3835-3844 (2013) · Zbl 1303.81061 · doi:10.1007/s11128-013-0638-1
[20] Li, DF; Wang, RJ; Zhang, FL; Baagyere, E.; Qin, Z.; Xiong, H.; Zhan, H., A noise immunity controlled quantum teleportation protocol, Quantum Inf. Process., 15, 4819-4837 (2016) · Zbl 1357.81048 · doi:10.1007/s11128-016-1416-7
[21] Zhou, RG; Zhang, YN; Xu, R.; Qian, C.; Ian, H., Asymmetric bidirectional controlled teleportation by using nine-qubit entangled state in noisy environment, IEEE Access., 7, 75247-75264 (2019) · doi:10.1109/ACCESS.2019.2920094
[22] Sun, YR; Xu, G.; Chen, XB; Yang, Y.; Yang, YX, Asymmetric controlled bidirectional remote preparation of single- and three-qubit equatorial state in noisy environment, IEEE Access., 7, 2811-2822 (2019) · doi:10.1109/ACCESS.2018.2885340
[23] Linden, N.; Massar, S.; Popescu, S., Purifying noisy entanglement requires collective measurements, Phys.Rev.Lett., 81, 3279-3282 (1998) · doi:10.1103/PhysRevLett.81.3279
[24] Li, W-L; Li, C-F; Guo, G-C, Probabilistic teleportation and entanglement matching, Phys. Rev. A, 61, 1-4 (2000)
[25] Lu, H.; Guo, G., Can: Teleportation of a two-particle entangled state via entanglement swapping, Phys. Lett. Sect. A Gen. At. Solid State Phys., 276, 209-212 (2000) · Zbl 1274.81016
[26] Lu, H.: Probabilistic teleportation of the three-particle entangled state via entanglement swapping. Chin. Phys. Lett. 18, (2001)
[27] Agrawal, P.; Pati, AK, Probabilistic quantum teleportation, Phys. Lett. Sect. A Gen. At. Solid State Phys., 305, 12-17 (2002) · Zbl 1001.81003
[28] Dai, HY; Chen, PX; Li, CZ, Probabilistic teleportation of an arbitrary two-particle state by two partial three-particle entangled W states, J. Opt. B Quantum Semiclassical Opt., 6, 106-109 (2004) · doi:10.1088/1464-4266/6/1/017
[29] Dai, HY; Chen, PX; Li, CZ, Probabilistic teleportation of an arbitrary two-particle state by a partially entangled three-particle GHZ state and W state, Opt. Commun., 231, 281-287 (2004) · doi:10.1016/j.optcom.2003.11.074
[30] Han, LF; Yuan, H., Probabilistic teleportation of an arbitrary two-qubit state via one-dimensional four-qubit cluster-class state, Int. J. Quantum Inf., 6, 1093-1099 (2008) · Zbl 1158.81316 · doi:10.1142/S0219749908004237
[31] Yu, LZ; Wu, T., Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state, Int. J. Theor. Phys., 52, 1461-1465 (2013) · doi:10.1007/s10773-012-1463-5
[32] Choudhury, BS; Dhara, A., Probabilistically teleporting arbitrary two-qubit states, Quantum Inf. Process, 15, 5063-5071 (2016) · Zbl 1357.81038 · doi:10.1007/s11128-016-1447-0
[33] Gou, YT; Shi, HL; Wang, XH; Liu, SY, Probabilistic resumable bidirectional quantum teleportation, Quantum Inf. Process, 16, 1-13 (2017) · Zbl 1387.81110 · doi:10.1007/s11128-017-1727-3
[34] Wei, J.; Shi, L.; Han, C.; Xu, Z.; Zhu, Y.; Wang, G.; Wu, H., Probabilistic teleportation via multi-parameter measurements and partially entangled states, Quantum Inf. Process, 17, 1-8 (2018) · Zbl 1395.81039 · doi:10.1007/s11128-017-1770-0
[35] Zha, XW; Zou, ZC; Qi, JX; Song, HY, Bidirectional quantum controlled teleportation via five-qubit cluster state, Int. J. Theor. Phys., 52, 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[36] Kim, YS; Lee, JC; Kwon, O.; Kim, YH, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nat. Phys., 8, 117-120 (2012) · doi:10.1038/nphys2178
[37] Kraus, K., General state changes in quantum theory[J], Ann. Phys., 64, 2, 311-335 (1971) · Zbl 1229.81137 · doi:10.1016/0003-4916(71)90108-4
[38] Lee, J. C., Jeong, Y. C., Kim, Y. S., Kim, Y. H.: Experimental Demonstration of Decoherence Suppression by Quantum Measurement Reversal. In: Optics InfoBase Conference Papers (2011)
[39] Yan, A., Bidirectional controlled teleportation via six-Qubit cluster state, Int. J. Theor. Phys., 52, 3870-3873 (2013) · Zbl 1282.81044 · doi:10.1007/s10773-013-1694-0
[40] Banerjee, A.; Pathak, A., Maximally efficient protocols for direct secure quantum communication, Phys. Lett. Sect. A Gen. At. Solid State Phys., 376, 2944-2950 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.