×

Hybrid multi-directional quantum communication protocol. (English) Zbl 07924465

Summary: The way a new type of state called a hybrid state, which contains more than one degree of freedom, is used in many practical applications of quantum communication tasks with lesser amount of resources. Similarly, our aim is here to perform multi-quantum communication tasks in a protocol to approach quantum information in multi-purpose and multi-directional. We propose a hybrid multi-directional six-party scheme of implementing quantum teleportation and joint remote state preparation under the supervision of a controller via a multi-qubit entangled state as a quantum channel with 100% success probability. Moreover, we analytically derive the average fidelities of this hybrid scheme under the amplitude-damping and the phase-damping noise.

MSC:

81P68 Quantum computation

References:

[1] Bennett, CH; Brassard, G.; Crépeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899, 1993 · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[2] Bennett, CH; DiVincenzo, DP; Shor, PW; Smolin, JA; Terhal, BM; Wootters, WK, Remote state preparation, Phys. Rev. Lett., 87, 077902, 2001 · doi:10.1103/PhysRevLett.87.077902
[3] Nguyen, BA; Kim, J., Joint remote state preparation, J. Phys. B At. Mol. Opt. Phys., 41, 095501, 2008 · doi:10.1088/0953-4075/41/9/095501
[4] Peng, JY; Yang, Z.; Tang, L.; Bai, MQ, Controlled remote state preparation of single-particle state under noisy channels with memory, Quantum Inf. Process., 22, 145, 2023 · Zbl 1509.81212 · doi:10.1007/s11128-023-03893-7
[5] Chaudhary, M.; Fadel, M.; Ilo-Okeke, EO; Pyrkov, AN, Remote state preparation of two-component Bose-Einstein condensates, Phy. Rev. A, 103, 062417, 2021 · doi:10.1103/PhysRevA.103.062417
[6] Peng, J-Y; Bai, M-Q; Tang, L.; Yang, Z.; Mo, Z-W, Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel, Quantum Inf. Process., 20, 10, 340, 2021 · Zbl 1509.81021 · doi:10.1007/s11128-021-03282-y
[7] Du, Z.; Li, X., Deterministic joint remote state preparation of four-qubit cluster type with tripartite involvement, Quantum Inf. Process., 19, 39, 2020 · Zbl 1508.81116 · doi:10.1007/s11128-019-2535-8
[8] Sang, Z-W, Controlled remote state preparation of an eight-qubit entangled state, Int. J. Theor. Phys., 59, 10, 3229-3234, 2020 · Zbl 1450.81020 · doi:10.1007/s10773-020-04576-0
[9] Sang, M-H; Yu, S-D, Controlled joint remote state preparation of an arbitrary equatorial two-qubit state, Int. J. Theor. Phys., 58, 9, 2910-2913, 2019 · Zbl 1422.81060 · doi:10.1007/s10773-019-04173-w
[10] Yang, YQ; Zha, XW; Yu, Y., Asymmetric bidirectional controlled teleportation via seven-qubit cluster state, Int. J. Theor. Phys., 55, 4197-4204, 2016 · Zbl 1358.81068 · doi:10.1007/s10773-016-3044-5
[11] Sisodia, M., An optimized bidirectional quantum Teleportation scheme with the use of Bell states, Int. J. Theor. Phys., 61, 90, 2022 · Zbl 1490.81037 · doi:10.1007/s10773-022-05075-0
[12] Sisodia, M., Improvement on quantum bidirectional teleportation scheme of two-two or two-three qubit quantum states, Int. J. Theor. Phys., 62, 63, 2023 · Zbl 1527.81028 · doi:10.1007/s10773-023-05315-x
[13] Banerjee, A.; Thapliyal, K.; Shukla, C.; Pathak, A., Quantum conference, Quantum Inf. Process., 161, 1-22, 2018 · Zbl 1448.81160
[14] Choudhury, BS; Samanta, S., A controlled asymmetric quantum conference, Int. J. Theor. Phys., 61, 14, 2022 · Zbl 1486.81043 · doi:10.1007/s10773-022-05019-8
[15] Sisodia, M., A theoretical study of controlled quantum teleportation scheme for n-qubit quantum state, Int. J. Theor. Phys., 61, 270, 2022 · Zbl 1516.81054 · doi:10.1007/s10773-022-05260-1
[16] Huo, G.; Zhang, T.; Zha, X.; Zhang, X.; Zhang, M., Controlled asymmetric bidirectional quantum teleportation of two-and three-qubit states, Quantum Inf. Process., 20, 1, 2021 · Zbl 1509.81207 · doi:10.1007/s11128-020-02956-3
[17] Mandal, MK; Choudhury, BS; Samanta, S., Quantum teleportation of W-type states in the presence of a controller, Mod. Phys. Lett. B, 38, 2350232, 2024 · doi:10.1142/S0217984923502329
[18] He, M.; Malaney, R., Teleportation of hybrid entangled states with continuous-variable entanglement, Sci. Rep., 12, 17169, 2022 · doi:10.1038/s41598-022-21283-4
[19] Zhang, Y.; Liu, T.; Zhao, J.; Yu, Y.; Yang, CP, Generation of hybrid Greenberger-Horne-Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED, Phy. Rev. A, 101, 062334, 2020 · doi:10.1103/PhysRevA.101.062334
[20] Gratsea, A.; Lewenstein, M.; Dauphin, A., Generation of hybrid maximally entangled states in a one-dimensional quantum walk, Quantum Sci. Technol., 5, 025002, 2020 · doi:10.1088/2058-9565/ab6ce6
[21] Wei, T.; Feng, W.; Chen, Y.; Wang, CX; Ge, N.; Lu, J., Hybrid satellite-terrestrial communication networks for the maritime Internet of Things: key technologies, opportunities, and challenges, IEEE Internet Things J., 8, 8910-8934, 2021 · doi:10.1109/JIOT.2021.3056091
[22] Joo, J.; Ginossar, E., Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics, Sci. Rep., 6, 26338, 2016 · doi:10.1038/srep26338
[23] Wu, H.; Zha, XW; Yang, YQ, Controlled bidirectional hybrid of remote state preparation and quantum teleportation via seven-qubit entangled state, Int. J. Theor. Phys., 57, 28-35, 2018 · Zbl 1387.81088 · doi:10.1007/s10773-017-3537-x
[24] Gong, L.; Li, X.; Ma, S., Bidirectional hybrid controlled quantum communication under noisy environment, Int. J. Theor. Phys., 58, 3734-3745, 2019 · Zbl 1428.81040 · doi:10.1007/s10773-019-04244-y
[25] Ma, PC; Chen, GB; Li, XW, Schemes for Hybrid Bidirectional Controlled Quantum Communication via Multi-qubit Entangled States, Int. J. Theor. Phys., 57, 443-452, 2018 · Zbl 1394.81061 · doi:10.1007/s10773-017-3577-2
[26] Zhang, Jh; Jiang, M., Butterfly network coding based on bidirectional hybrid controlled quantum communication, Quantum Inf. Process., 21, 107, 2022 · Zbl 1508.81349 · doi:10.1007/s11128-022-03447-3
[27] Gong, L.; Chen, XB; Xu, G.; Chang, Y.; Yang, YX, Multi-party controlled cyclic hybrid quantum communication protocol in noisy environment, Quantum Inf. Process., 21, 375, 2022 · Zbl 1508.81292 · doi:10.1007/s11128-022-03725-0
[28] Mandal, MK; Choudhury, BS; Samanta, S., Hybrid bidirectional quantum communication protocol of two single-qubit states under noisy channels with memory, Quantum Inf. Process., 22, 406, 2023 · Zbl 1542.81167 · doi:10.1007/s11128-023-04165-0
[29] Hua, X.; Li, D.; Fu, Y.; Zhu, Y.; Jiang, Y.; Zhou, J.; Yang, X.; Tan, Y., Hierarchical controlled hybrid quantum communication based on six-qubit entangled states in IoT, Sensors, 23, 9111, 2023 · doi:10.3390/s23229111
[30] Liu, A.; Chen, XB; Xu, S.; Wang, Z.; Li, Z.; Xu, L.; Zhang, Y.; Chen, Y., A secure scheme based on a hybrid of classical-quantum communications protocols for managing classical blockchains, Entropy, 25, 811, 2023 · doi:10.3390/e25050811
[31] Gong, L.; Chen, X.; Xu, G.; Li, Z., Controlled cyclic and bidirectional hybrid quantum communication of arbitrary two-qubit states, Adv. Quantum Technol., 7, 2300183, 2024 · doi:10.1002/qute.202300183
[32] Nielsen, MA; Chuang, IL, Quantum Computation and Quantum Information, 2010, Cambridge: Cambridge University Press, Cambridge · Zbl 1288.81001
[33] Fortes, R.; Rigolin, G., Fighting noise with noise in realistic quantum teleportation, Phys. Rev. A., 92, 012338, 2015 · doi:10.1103/PhysRevA.92.012338
[34] Henderson, L.; Hardy, L.; Vedral, V., Two-state teleportation, Phys. Rev. A, 61, 062306, 2000 · doi:10.1103/PhysRevA.61.062306
[35] Sisodia, M.; Verma, V.; Thapliyal, K.; Pathak, A., Teleportation of a qubit using entangled non-orthogonal states: a comparative study, Quantum Inf. Process., 16, 1-23, 2017 · Zbl 1373.81119 · doi:10.1007/s11128-017-1526-x
[36] Zhang, X.; Jin, W.; Zeng, H.; Feng, J.; Yang, C., Cost-effective bidirectional controlled quantum teleportation scheme by using nine-qubit entangled state, Int. J. Theor. Phys., 62, 95-102, 2023 · Zbl 1528.81079 · doi:10.1007/s10773-023-05360-6
[37] Li, YH; Jin, XM, Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments, Quantum Inf. Process., 15, 929-945, 2016 · Zbl 1333.81080 · doi:10.1007/s11128-015-1194-7
[38] Jiang, SX; Zhou, RG; Xu, R.; Luo, G., Cyclic hybrid double-channel quantum communication via Bell-state and GHZ-state in noisy environments, IEEE Access, 7, 80530-80541, 2019 · doi:10.1109/ACCESS.2019.2923322
[39] Kaur, S., Multidirectional quantum controlled teleportation in noisy environment, Int. J. Theor. Phys., 62, 249, 2023 · Zbl 1537.81224 · doi:10.1007/s10773-023-05472-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.