×

Bidirectional controlled quantum teleportation using eight-qubit quantum channel in noisy environments. (English) Zbl 1450.81021

Summary: In this work, a novel protocol is proposed for bidirectional controlled quantum teleportation (BCQT) in which a quantum channel is used with the eight-qubit entangled state. Using the protocol, two users can teleport an arbitrary entangled state and a pure two-qubit state (QBS) to each other simultaneously under the permission of a third party in the role of controller. This protocol is based on the controlled-not operation, appropriate single-qubit (SIQ) UOs, and SIQ measurements in the \(Z\) and \(X\)-basis. Also, in this paper, a new criterion of merit named as (predictability of the controller’s qubit (QB) by the eavesdropper) is introduced, and the protocol is improved based on it. Then, the proposed protocol is investigated in two typical noisy channels, the amplitude-damping noise (ADN) and the phase-damping noise (PDN). The analysis of the protocol in the noisy environment shows that it only depends on the amplitude of the initial state and the decoherence noisy rate (DR).

MSC:

81P48 LOCC, teleportation, dense coding, remote state operations, distillation
81Q93 Quantum control
81P40 Quantum coherence, entanglement, quantum correlations
81P47 Quantum channels, fidelity
81S22 Open systems, reduced dynamics, master equations, decoherence

References:

[1] Nielsen, MA; Chuang, IL, Quantum Computation and Quantum Information (2001), Cambridge: Cambridge University Press, Cambridge
[2] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wootters, WK, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett., 70, 1895-1899 (1993) · Zbl 1051.81505 · doi:10.1103/PhysRevLett.70.1895
[3] Shi, B-S; Tomita, A., Teleportation of an unknown state by W state, Phys. Lett. A, 296, 161-164 (2002) · Zbl 0994.81017 · doi:10.1016/S0375-9601(02)00257-8
[4] Ursin, R.; Jennewein, T.; Aspelmeyer, M.; Kaltenbaek, R.; Lindenthal, M.; Walther, P.; Zeilinger, A., Communications: quantum teleportation across the Danube, Nature, 430, 849-849 (2004) · doi:10.1038/430849a
[5] Agrawal, P.; Pati, A., Perfect teleportation and superdense coding with W states, Phys. Rev. A, 74, 062320 (2006) · doi:10.1103/PhysRevA.74.062320
[6] Muralidharan, S.; Panigrahi, PK, Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state, Phys. Rev. A, 77, 032321 (2008) · doi:10.1103/PhysRevA.77.032321
[7] Tang, S-Q; Shan, C-J; Zhang, X-X, Quantum teleportation of an unknown two-atom entangled state using four-atom cluster state, Int. J. Theor. Phys., 49, 1899-1903 (2010) · Zbl 1197.81081 · doi:10.1007/s10773-010-0373-7
[8] Nie, Y-y; Li, Y-h; Liu, J-c; Sang, M-h, Perfect teleportation of an arbitrary three-qubit state by using W-class states, Int. J. Theor. Phys., 50, 3225-3229 (2011) · Zbl 1236.81057 · doi:10.1007/s10773-011-0825-8
[9] Yuan-Hua, L.; Yi-You, N., Quantum information splitting of an arbitrary three-atom state by using W-class states in cavity QED, Commun. Theor. Phys., 57, 995 (2012) · Zbl 1247.81070 · doi:10.1088/0253-6102/57/6/10
[10] Luo, M.-X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with χ-state. Quantum Inf. Process. 1-12 (2013) · Zbl 1264.81144
[11] Li, Y-h; Li, X-l; Sang, M-h; Nie, Y-y, Splitting unknown two-qubit state using five-qubit entangled state, Int. J. Theor. Phys., 53, 111-115 (2014) · Zbl 1284.81062 · doi:10.1007/s10773-013-1788-8
[12] Nandi, K.; Mazumdar, C., Quantum teleportation of a two qubit state using GHZ-like state, Int. J. Theor. Phys., 53, 1322-1324 (2014) · Zbl 1300.81017 · doi:10.1007/s10773-013-1928-1
[13] Sang, M-h, Bidirectional quantum teleportation by using five-qubit cluster state, Int. J. Theor. Phys., 55, 3, 1333-1335 (2016) · Zbl 1338.81108 · doi:10.1007/s10773-015-2774-0
[14] Zhou, R-G; Li, X.; Qian, C.; Ian, H., Quantum bidirectional teleportation 2↔ 2 or 2↔ 3 Qubit teleportation protocol via 6-Qubit entangled state, Int. J. Theor. Phys., 59, 1, 166-172 (2020) · Zbl 1433.81047 · doi:10.1007/s10773-019-04306-1
[15] Koochaki, F.; Sharifi, I.; Talebi, HA, A novel architecture for cooperative remote rehabilitation system, Comput. Electr. Eng., 56, 715-731 (2016) · doi:10.1016/j.compeleceng.2016.08.001
[16] Karlsson, A.; Bourennane, M., Quantum teleportation using three-particle entanglement, Phys. Rev. A, 58, 4394-4400 (1998) · doi:10.1103/PhysRevA.58.4394
[17] Yang, C-P; Han, S., A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network, Phys. Lett. A, 343, 267-273 (2005) · Zbl 1194.81042 · doi:10.1016/j.physleta.2005.06.048
[18] Deng, F-G; Li, C-Y; Li, Y-S; Zhou, H-Y; Wang, Y., Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement, Phys. Rev. A, 72 (2005) · doi:10.1103/PhysRevA.72.022338
[19] Wang, Y-H; Song, H-S, Preparation of partially entangled W state and deterministic multi-controlled teleportation, Opt. Commun., 281, 489-493 (2008) · doi:10.1016/j.optcom.2007.09.057
[20] Song-Song, L.; Yi-You, N.; Zhi-Hui, H.; Xiao-Jie, Y.; Yi-Bin, H., Controlled teleportation using four-particle cluster state, Commun. Theor. Phys., 50, 633-636 (2008) · Zbl 1392.81064 · doi:10.1088/0253-6102/50/3/20
[21] Wang, X-W; Su, Y-H; Yang, G-J, Controlled teleportation against uncooperation of part of supervisors, Quantum Inf. Process, 8, 319-330 (2009) · Zbl 1181.81020 · doi:10.1007/s11128-009-0107-z
[22] Tian-Yin, W.; Qiao-Yan, W., Controlled quantum teleportation with bell states, Chinese Physics B, 20, 040307 (2011) · doi:10.1088/1674-1056/20/4/040307
[23] Zha, X-W; Zou, Z-C; Qi, J-X; Song, H-Y, Bidirectional quantum controlled teleportation via five-qubit cluster state, Int. J. Theor. Phys., 52, 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[24] Shukla, C.; Banerjee, A.; Pathak, A., Bidirectional controlled teleportation by using 5-qubit states: a generalized view, Int. J. Theor. Phys., 52, 3790-3796 (2013) · doi:10.1007/s10773-013-1684-2
[25] S. Hassanpour and M. Houshmand: Bidirectional quantum controlled teleportation by using EPR states and entanglement swapping, arXiv preprint arXiv:1502.03551, (2015) · Zbl 1311.81094
[26] Amiri, IS; Alavi, SE; Bahadoran, M.; Afroozeh, A.; Ahmad, H., Nanometer bandwidth Soliton generation and experimental transmission within nonlinear Fiber optics using an add-drop filter system, J. Comput. Theor. Nanosci., 12, 221-225 (2015) · doi:10.1166/jctn.2015.3721
[27] Hong, W-q, Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state, Int. J. Theor. Phys., 55, 384-387 (2016) · Zbl 1335.81041 · doi:10.1007/s10773-015-2671-6
[28] Sang, M-h, Bidirectional quantum controlled teleportation by using a seven-qubit entangled state, Int. J. Theor. Phys., 55, 380-383 (2016) · Zbl 1335.81046 · doi:10.1007/s10773-015-2670-7
[29] Li, Y-h; Jin, X-m, Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments, Quantum Inf. Process, 15, 929-945 (2016) · Zbl 1333.81080 · doi:10.1007/s11128-015-1194-7
[30] Li, Y-h; Nie, L-p; Li, X-l; Sang, M-h, Asymmetric bidirectional controlled teleportation by using six-qubit cluster state, Int. J. Theor. Phys., 55, 3008-3016 (2016) · Zbl 1342.81043 · doi:10.1007/s10773-016-2933-y
[31] Choudhury, BS; Samanta, S., Asymmetric bidirectional 3⇔ 2 qubit teleportation protocol between Alice and bob via 9-qubit cluster state, Int. J. Theor. Phys., 56, 10, 3285-3296 (2017) · Zbl 1387.81103 · doi:10.1007/s10773-017-3495-3
[32] Zheng, S-B, Scheme for approximate conditional teleportation of an unknown atomic state without the bell-state measurement, Phys. Rev. A, 69 (2004) · doi:10.1103/PhysRevA.69.064302
[33] Riebe, M.; Häffner, H.; Roos, C.; Hänsel, W.; Benhelm, J.; Lancaster, G., Deterministic quantum teleportation with atoms, Nature, 429, 734-737 (2004) · doi:10.1038/nature02570
[34] Bouwmeester, D.; Pan, J-W; Mattle, K.; Eibl, M.; Weinfurter, H.; Zeilinger, A., Experimental quantum teleportation, Nature, 390, 575-579 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[35] Wang, X-L; Cai, X-D; Su, Z-E; Chen, M-C; Wu, D.; Li, L.; Liu, NL; Lu, CY; Pan, JW, Quantum teleportation of multiple degrees of freedom of a single photon, Nature, 518, 516-519 (2015) · doi:10.1038/nature14246
[36] Metcalf, BJ; Spring, JB; Humphreys, PC; Thomas-Peter, N.; Barbieri, M.; Kolthammer, WS; Jin, XM; Langford, NK; Kundys, D.; Gates, JC; Smith, BJ; Smith, PGR; Walmsley, IA, Quantum teleportation on a photonic chip, Nat. Photonics, 8, 770-774 (2014) · doi:10.1038/nphoton.2014.217
[37] Xian-Ting, L., Classical information capacities of some single qubit quantum noisy channels, Commun. Theor. Phys., 39, 537-542 (2003) · doi:10.1088/0253-6102/39/5/537
[38] Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-Qubit state by using eight-Qubit entangled state as a Quantum Channel. Int. J. Theor. Phys. 1-12 (2017) · Zbl 1383.81048
[39] N. Nickerson: Practical Fault-Tolerant Quantum Computing, (2015)
[40] Eisert, J.; Jacobs, K.; Papadopoulos, P.; Plenio, M., Optimal local implementation of nonlocal quantum gates, Phys. Rev. A, 62, 052317 (2000) · doi:10.1103/PhysRevA.62.052317
[41] Chen, Y., Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state, Int. J. Theor. Phys., 54, 1, 269-272 (2015) · Zbl 1315.81030 · doi:10.1007/s10773-014-2221-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.