×

Multidimensional Fourier transforms on an amalgam type space. (English) Zbl 1463.42018

Summary: Generalizing the known results on the Fourier transforms on an amalgam type space, we introduce a multidimensional analogue of such a space, a subspace of \(L^1(\mathbb{R}_+^n)\). Integrability results for the Fourier transforms are obtained provided that certain derivatives of the transformed function are in that space. As an application, we obtain conditions for the integrability of multiple trigonometric series.

MSC:

42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
42B35 Function spaces arising in harmonic analysis

References:

[1] B. Aubertin, J. J. F. Fournier, “Integrability theorems for trigonometric series”, Studia Math., 107 (1993), 33-59 · Zbl 0809.42001 · doi:10.4064/sm-107-1-33-59
[2] B. Aubertin, J. J.F. Fournier, “Integrability of multiple series”, Fourier analysis: analytic and geometric aspects, Lecture notes in pure and applied math., 157, eds. W. O. Bray, P. S. Milojević, Č. V. Stanojević, Marcel Dekker, Inc., New York, 1994, 47-75 · Zbl 0807.42005
[3] S. Bochner, Lectures on Fourier integrals, Princeton Univ. Press, Princeton, N.J., 1959 · Zbl 0085.31802
[4] M. Buntinas, N. Tanović-Miller, “New integrability and \(L^1\)-convergence classes for even trigonometric series II”, Appr. Theory, Colloq. Math. Soc. János Bolyai, 58, eds. J. Szabados, K. Tandori, North-Holland, Amsterdam, 1991, 103-125 · Zbl 0784.42004
[5] H. Feichtinger, “Wiener amalgams over Euclidean spaces and some of their applications”, Function spaces (Edwardsville, IL, 1990), Lect. Notes Pure Appl. Math., 136, Dekker, New York, 1992, 123-137 · Zbl 0833.46030
[6] J. J. F. Fournier, J. Stewart, “Amalgams of \(L^p\) and \(\ell^q\)”, Bull. Amer. Math. Soc. (N.S.), 13 (1985), 1-21 · Zbl 0593.43005 · doi:10.1090/S0273-0979-1985-15350-9
[7] D. V. Giang, F. Móricz, “Lebesgue integrability of double Fourier transforms”, Acta Sci. Math. (Szeged), 58 (1993), 299-328 · Zbl 0788.42004
[8] C. Heil, “An Introduction to weighted Wiener amalgams”, Wavelets and their Applications (Chennai, 2002), eds. M. Krishna, R. Radha, S. Thangavelu, Allied Publishers, New Delhi, 2003, 183-216
[9] A. Iosevich, E. Liflyand, Decay of the Fourier transform: analytic and geometric aspects, Birkhauser, 2014 · Zbl 1306.42002
[10] E. Liflyand, “Fourier transforms on an amalgam type space”, Monatsh. Math., 172 (2013), 345-355 · Zbl 1283.42012 · doi:10.1007/s00605-013-0562-6
[11] E. Liflyand, “Integrability spaces for the Fourier transform of a function of bounded variation”, J. Math. Anal. Appl., 436 (2016), 1082-1101 · Zbl 1341.42009 · doi:10.1016/j.jmaa.2015.12.042
[12] E. Liflyand, “Multiple Fourier transforms and trigonometric series in line with Hardy”s variation”, Contemporary Math., 659, 2016, 135-155 · Zbl 1347.42020 · doi:10.1090/conm/659/13147
[13] E. Liflyand, Functions of bounded variation and their Fourier transforms, Birkhäuser, 2019 · Zbl 1418.42001
[14] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, N.J., 1971 · Zbl 0232.42007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.