×

On Szegő’s theorem for a nonclassical case. (English) Zbl 1361.42025

The paper introduces an analogue of a theorem of Szegő on orthogonal polynomials on the unit circle. Let \(\left\{ a_n\right\}_{n=0}^\infty\) be a sequence of complex numbers such that \[ |a_n |<1,\; \forall n.\tag{1} \] A monic polynomial \(\Phi_{n+1}\) can be defined using the recurrence relations \[ \Phi_{n+1}(z)=z\Phi_{n}(z)-\overline{a}_n \Phi^*_{n}(z); \quad \Phi_0(z)=1 , \]
\[ \Phi^*_{n+1}(z)=\Phi^*_{n}(z) -{a}_n z \Phi_{n}(z) , \] where \( \Phi^*_{n}(z)=z^n \overline{\Phi_n}(1/\overline{z})\).
The sequence of complex numbers satisfying (1) is called Verblunsky coefficients. For any such sequence, there exists a probability measure \(\mu\) for which \(\Phi_n\) is the \(n\)th monic orthogonal polynomial with respect to \(\mu\) on the unit circle \(\mathbb{T}\). Condition (1) is necessary and sufficient for the existence of a Schur function \(f\) which is analytic in the unit disc \(\mathbb{D}\) and maps \(\mathbb{D}\) into its closure with \(\sup_{z\in \mathbb{D}}\left| f(z)\right|\leq 1 .\) The Schur function gives rise to a Carathéodory function \(F(z)\) given by \[ F(z)=\frac{ 1+zf(z)}{1-zf(z)} . \] If we decompose the measure \[ d\mu=w(\theta) \frac{d\theta}{2\pi} + d\mu_s, \] where \(w\in L^1\left(\mathbf{T}, \frac{d\theta}{2\pi}\right)\) and \(d\mu_s\) is the singular part of the measure, it can be shown that \[ \operatorname{Re} F(e^{i\theta}) =\frac{1-\left|f(e^{i\theta})\right|^2 }{ \left|1- e^{i\theta} f(e^{i\theta})\right|^2 =w(\theta)}. \] Szegő’s theorem relates the Verblunsky coefficients to the measure via the relation \[ \prod_{j=0}^\infty \left( 1-|a_j|^2\right)= \exp \left( \int_0^{2\pi}\log \left( \operatorname{Re} F(e^{i\theta})\right) \frac{d\theta}{2\pi} \right). \]
In the paper under review, the authors replace condition (1) with the following condition which implies that the first \(N\) coefficients lie outside the closed unit disc \[ |a_n|\neq 1, n=0,1, \cdots , N-1, \text{ and } |a_n|<1, \quad \forall n \geq N, \] and prove the following analogue of Szegő’s theorem \[ \prod_{j=0}^\infty \left( 1-|a_j|^2\right)= \prod_{j=0}^m |\lambda_j|^{-2} \exp \left( \int_0^{2\pi}\log \left( \operatorname{Re} F(e^{i\theta})\right) \frac{d\theta}{2\pi} \right) , \] where \(\lambda_j, \; j=0, 1, \cdots , m,\) are the poles in \(\mathbb{D}\) of a function \(F\) that plays the role of the Carathéodory function. An analogue of a theorem of Verblunsky is also derived.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
30D30 Meromorphic functions of one complex variable (general theory)
46C20 Spaces with indefinite inner product (Kreĭn spaces, Pontryagin spaces, etc.)

References:

[1] Akhiezer, N. I., The Classical Moment Problem and Some Related Problems in Analysis (1965), Hafner Publishing Co.: Hafner Publishing Co. New York · Zbl 0135.33803
[2] Alpay, D.; Azizov, T.; Dijksma, A.; Langer, H., The Schur algorithm for generalized Schur functions. I. Coisometric realizations, (Systems, Approximation, Singular Integral Operators, and Related Topics. Systems, Approximation, Singular Integral Operators, and Related Topics, Bordeaux, 2000. Systems, Approximation, Singular Integral Operators, and Related Topics. Systems, Approximation, Singular Integral Operators, and Related Topics, Bordeaux, 2000, Oper. Theory Adv. Appl., vol. 129 (2001)), 1-36 · Zbl 1008.47017
[3] Alpay, D.; Dijksma, A.; Langer, H., The transformation of Issai Schur and related topics in an indefinite setting, system theory, the Schur algorithm and multidimensional analysis, Oper. Theory Adv. Appl., 176, 1-98 (2007) · Zbl 1128.47015
[4] Delsarte, P.; Genin, Y.; Kamp, Y., Pseudo-Carathéodory functions and Hermitian Toeplitz matrices, Philips J. Res., 41, 1, 1-54 (1986) · Zbl 0607.30033
[5] Derevyagin, M.; Derkach, V., Spectral problems for generalized Jacobi matrices, Linear Algebra Appl., 382, 1-24 (2004) · Zbl 1053.15018
[6] Derevyagin, M.; Derkach, V., On convergence of Padé approximants for generalized Nevanlinna functions, Trans. Moscow Math. Soc., 68, 133-182 (2007) · Zbl 1161.30025
[7] Dijksma, A.; Wanjala, G., Generalized Schur functions and augmented Schur parameters, Oper. Theory Adv. Appl., 162, 135-144 (2005) · Zbl 1118.30023
[8] Dym, H., Hermitian block Toeplitz matrices, orthogonal polynomials, reproducing kernel Pontryagin spaces, interpolation and extension, Oper. Theory Adv. Appl., 34, 79-135 (1988) · Zbl 0658.47018
[9] Dym, H.; Katsnelson, V., Contributions of Issai Schur to analysis. Studies in memory of Issai Schur, (Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000. Studies in Memory of Issai Schur. Studies in Memory of Issai Schur, Chevaleret/Rehovot, 2000, Progr. Math., vol. 210 (2003), Birkhäuser Boston: Birkhäuser Boston Boston, MA) · Zbl 1037.01007
[10] Geronimus, Ya. L., Polynomials orthogonal on a circle and their applications, Amer. Math. Transl. Ser., 1, 3, 1-78 (1962) · Zbl 0146.08903
[11] Ismail, M., Classical and Quantum Orthogonal Polynomials (2005), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1082.42016
[12] Khrushchev, S., Schur’s algorithm, orthogonal polynomials, and convergence of Wall’s continued fractions in \(L_2(T)\), J. Approx. Theory, 108, 2, 161-248 (2001) · Zbl 1048.42024
[13] Khrushchev, S., Orthogonal Polynomials and Continued Fractions. from Euler’s Point of View, Encyclopedia of Mathematics and Its Applications, vol. 122 (2008), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1151.33002
[14] Krein, M. G., Distribution of roots of polynomials orthogonal on the unit circle with respect to a sign-alternating weight, Teor. Funkc. Funkc. Anal. Ih Prilož., 2, 131-137 (1966), (in Russian) · Zbl 0257.30002
[15] Krein, M. G.; Langer, H., Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren im Raume \(\Pi_\kappa\) zusammenhängen. I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr., 77, 187-236 (1977) · Zbl 0412.30020
[16] Marcellán, F.; Godoy, E., Orthogonal polynomials on the unit circle: distribution of zeros, J. Comput. Appl. Math., 37, 1-3, 195-208 (1991) · Zbl 0745.42013
[17] Marcellán, F.; Shayanfar, N., OPUC, CMV matrices and perturbations of measures supported on the unit circle, Linear Algebra Appl., 485, 305-344 (2015) · Zbl 1323.42024
[18] Pintér, F.; Nevai, P., Schur functions and orthogonal polynomials on the unit circle, (Approximation Theory and Function Series. Approximation Theory and Function Series, Bolyai Soc. Math. Stud., vol. 5 (1996), János Bolyai Math. Soc.: János Bolyai Math. Soc. Budapest), 293-306 · Zbl 0866.30010
[19] Rudin, W., Real and Complex Analysis (1987), McGraw-Hill: McGraw-Hill Madison, WI · Zbl 0925.00005
[20] Sakhnovich, A., Toeplitz matrices with an exponential growth of entries and the first Szegő limit theorem, J. Funct. Anal., 171, 2, 449-482 (2000) · Zbl 0967.47022
[21] Shohat, J. A., Sur les polynômes orthogonaux généralisés, C. R. Acad. Sci., 207, 556-558 (1938) · Zbl 0019.40503
[22] Simon, B., Orthogonal Polynomials on the Unit Circle, Part One: Classical Theory (2005), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1082.42020
[23] Simon, B., Orthogonal Polynomials on the Unit Circle, Part Two: Spectral Theory (2005), American Mathematical Society: American Mathematical Society Providence, RI · Zbl 1082.42021
[24] Vinet, L.; Zhedanov, A., Szegő polynomials on the real axis, Integral Transforms Spec. Funct., 8, 1-2, 149-164 (1999) · Zbl 0939.33010
[25] Zayed, A., Generalized functions and orthogonal polynomials on the unit circle, Proc. Amer. Math. Soc., 88, 3, 407-415 (1983) · Zbl 0541.33010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.