×

Epireflective subcategories and formal closure operators. (English) Zbl 1397.18007

Summary: On a category \(\mathscr{C}\) with a designated (well-behaved) class \(\mathcal{M}\) of monomorphisms, a closure operator in the sense of D. Dikranjan and E. Giuli is a pointed endofunctor of \(\mathcal{M}\), seen as a full subcategory of the arrow-category \(\mathscr{C}^{\mathbf{2}}\) whose objects are morphisms from the class \(\mathcal{M}\), which “commutes” with the codomain functor \(\mathsf{cod}\colon \mathcal{M}\to \mathscr{C}\). In other words, a closure operator consists of a functor \(C\colon \mathcal{M}\to\mathcal{M}\) and a natural transformation \(c\colon 1_\mathcal{M}\to C\) such that \(\mathsf{cod} \cdot C=C\) and \(\mathsf{cod}\cdot c=1_{\mathsf{cod}}\). In this paper we adapt this notion to the domain functor \(\mathsf{dom}\colon \mathcal{E}\to\mathscr{C}\), where \(\mathcal{E}\) is a class of epimorphisms in \(\mathscr{C}\), and show that such closure operators can be used to classify \(\mathcal{E}\)-epireflective subcategories of \(\mathscr{C}\), provided \(\mathcal{E}\) is closed under composition and contains isomorphisms.

MSC:

18A40 Adjoint functors (universal constructions, reflective subcategories, Kan extensions, etc.)
08C15 Quasivarieties
18A20 Epimorphisms, monomorphisms, special classes of morphisms, null morphisms
18A22 Special properties of functors (faithful, full, etc.)
18A32 Factorization systems, substructures, quotient structures, congruences, amalgams
18D30 Fibered categories

References:

[1] A. Abdalla, Binary closure operators, PhD Thesis, Stellenbosch University, 2015.
[2] M. Barr, P. A. Grillet, and D. H. van Osdol, Exact categories and categories of sheaves, Lecture Notes in Math. 236, Springer-Verlag, 1971. · Zbl 0223.18009
[3] F. Borceux, Handbook of Categorical Algebra 2: Categories and Structures, Encyclopedia Math. Appl. 51, Cambridge University Press, 1994. · Zbl 0843.18001
[4] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-abelian categories, Math. Appl. 566, Kluwer, 2004. · Zbl 1061.18001
[5] F. Borceux, M. M. Clementino, M. Gran, and L. Sousa, Protolocalisations of homological categories, J. Pure Appl. Algebra 212, 2008, 1898-1927. · Zbl 1151.18012
[6] F. Borceux, M. Gran, and S. Mantovani, On closure operators and reflections in Goursat cate gories, Rend. Istit. Mat. Univ. Trieste 39, 2007, 87-104. · Zbl 1153.18003
[7] D. Bourn, Normalization equivalence, kernel equivalence and affine categories, Lecture Notes in Math. 1488, 1991, 43-62. · Zbl 0756.18007
[8] D. Bourn and M. Gran, Torsion theories in homological categories, J. Algebra 305, 2006, 18-47. · Zbl 1123.18009
[9] M. M. Clementino, D. Dikranjan, and W. Tholen, Torsion theories and radicals in normal categories, J. Algebra 305, 2006, 98-129. · Zbl 1121.18010
[10] M. M. Clementino and G. Gutierres, On regular and homological closure operators, Cah. Topol. G´eom. Diff´er. Cat´eg. 51, 2010, 127-142. · Zbl 1216.18002
[11] D. Dikranjan and E. Giuli, Closure operators I, Topology Appl. 27, 1987, 129-143. · Zbl 0634.54008
[12] D. Dikranjan, E. Giuli, and W. Tholen, Closure operators II, in: J. Ad´amek, S. Mac Lane (Eds.), Categorical Topology and its Relations to Analysis, Algebra and Combinatorics, World Scientific, Singapore, 1989, 297-335.
[13] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators with Applications to Topology, Algebra, and Discrete Mathematics, Math. Appl. 346, Kluwer, 1995. · Zbl 0853.18002
[14] D. Dikranjan and W. Tholen, Dual closure operators and their applications, J. Algebra 439, 2015, 373-416. · Zbl 1320.18002
[15] M. Duckerts-Antoine, Fundamental group functors in descent-exact homological categories, Adv. Math. 310, 2017, 64-120. · Zbl 1370.18016
[16] M. Duckerts, T. Everaert, and M. Gran, A description of the fundamental group in terms of commutators and closure operators, J. Pure Appl. Algebra 216, 2012, 1837-1851. · Zbl 1257.18012
[17] T. Everaert, Relative commutator theory in varieties of Ω-groups, J. Pure Appl. Algebra 210, 2007, 1-10. · Zbl 1117.08007
[18] V. Even and M. Gran, On factorization systems for surjective quandle homomorphisms, J. Knot Theory Ramifications 23, No. 11, 2014, 1450060. 546 MATHIEU DUCKERTS-ANTOINE, MARINO GRAN, AND ZURAB JANELIDZE · Zbl 1306.18001
[19] D. Holgate and J. ˘Slapal, Categorical neighborhood operators, Topology Appl. 158, 2011, 2356- 2365. · Zbl 1232.54018
[20] G. Janelidze and G. M. Kelly, Galois Theory and a general notion of central extensions, J. Pure Appl. Algebra 97, 1994, 135-161. · Zbl 0813.18001
[21] G. Janelidze, L. M´arki, and W. Tholen, Semi-abelian categories, J. Pure Appl. Algebra 168, 2002, 367-386. · Zbl 0993.18008
[22] G. Janelidze, L. M´arki, W. Tholen, and A. Ursini, Ideal determined categories, Cah. Topol. G´eom. Diff´er. Cat´eg. 33, 2010, 113-124.
[23] Z. Janelidze, Closedness properties of internal relations V: Linear Mal’tsev conditions, Algebra Universalis 58, 2008, 105-117. · Zbl 1133.08002
[24] Z. Janelidze, Cover relations on categories, Appl. Categ. Structures 17, 2009, 351-371. · Zbl 1177.18002
[25] Z. Janelidze, The pointed subobject functor, 3 × 3 lemmas, and subtractivity of spans, Theory Appl. Categ. 23, 2010, 221-242. · Zbl 1234.18009
[26] Z. Janelidze, On the form of subobjects in semi-abelian and regular protomodular categories, Appl. Categ. Structures 22, 2014, 755-766. · Zbl 1309.18008
[27] Z. Janelidze and T. Weighill, Duality in non-abelian algebra I. From cover relations to Grandis ex2-categories, Theory Appl. Categ. 29, 2014, 315-331. · Zbl 1305.18028
[28] W. Tholen, Closure operators and their middle-interchange law, Topology Appl. 158, 2011, 2437- 2441. · Zbl 1231.18003
[29] S. J. R. Vorster, Interior operators in general categories, Quaest. Math. 23, 2000, 405-416. · Zbl 0974.18003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.