×

Adaptive asymptotic tracking control of constrained multi-input multi-output nonlinear systems via event-triggered strategy. (English) Zbl 1526.93119

Summary: It is nontrivial to achieve adaptive asymptotic tracking control of multi-input multi-output (MIMO) nonlinear systems subject to asymmetric yet time-varying output constraint and nonparametric uncertainties. The problem will become even challenging when the event-triggered mechanism via controller-to-actuator channel is considered as it may impose additional design difficulty caused by the high-order gain matrix. In this article, we present a new event-based control solution by using the following steps. First, by constructing a new output-dependent mapping function, not only the limit on constraining boundaries is not required but also the cases with and without constraint can be handled directly and uniformly without changing the control structure; Second, due to the introduction of event-triggered rule, it is difficult (even impossible) to guarantee the positive definite property of the “virtual” high-order gain matrix; Hence by imposing a reasonable condition on the original high-order gain matrix, such difficulty in the event-triggered control design is solved and the widely used assumption in most existing results of MIMO systems is removed; Furthermore, unlike the corresponding uniformly bounded tracking results, by employing an integrable function coping with nonparametric uncertainties, asymptotic tracking can be achieved. A simulation example is given to illustrate the effectiveness of the developed theoretical result.
{© 2020 John Wiley & Sons, Ltd.}

MSC:

93C40 Adaptive control/observation systems
93C65 Discrete event control/observation systems
93C35 Multivariable systems, multidimensional control systems
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] PremaratneU, HalgamugeSK, MareelsI. Traffic reduction in packet switched networked control systems using deadband error modulation. IEEE Trans Autom Control. 2017;62(8):4038‐4043. · Zbl 1373.93133
[2] HuangJ, WangW, WenC, LiG. Adaptive event‐triggered control of nonlinear systems with controller and parameter estimator triggering. IEEE Trans Autom Control. 2020;65(1):318‐324. · Zbl 1483.93244
[3] LiY, TongS, YangGH. Observer‐based adaptive fuzzy decentralized event‐triggered control of interconnected nonlinear system. IEEE Trans Cybern. 2019;50(7):3104‐3112. https://doi.org/10.1109/TCYB.2019.2894024. · doi:10.1109/TCYB.2019.2894024
[4] LiY, YangGH. Observer‐based fuzzy adaptive event‐triggered control codesign for a class of uncertain nonlinear systems. IEEE Trans Fuzzy Syst. 2017;26(3):1589‐1599.
[5] SzantoN, NarayananV, JagannathanS. Event‐sampled direct adaptive NN output‐ and state‐feedback control of uncertain strictfeedback system. IEEE Trans Neural Netw Learn Syst. 2018;29(5):1850‐1863.
[6] GirardA. Dynamic triggering mechanisms for event‐triggered control. IEEE Trans Autom Control. 2015;60(7):1992‐1997. · Zbl 1360.93423
[7] KrsticM, KokotovicPV, KanellakopoulosI. Nonlinear and Adaptive Control Design. New York, NY: Wiley; 1995.
[8] SongYD, ZhaoK, KrsticM. Adaptive control with exponential regulation in the absence of persistent excitation. IEEE Trans Autom Control. 2017;62(5):2589‐2596. · Zbl 1366.93301
[9] TabuadaP. Event‐triggered real‐time scheduling of stabilizing control tasks. IEEE Trans Autom Control. 2007;52(9):1680‐1685. · Zbl 1366.90104
[10] PostoyanR, TabuadaP, NesicD, AntaA. A framework for the event‐triggered stabilization of nonlinear systems. IEEE Trans Autom Control. 2015;60(4):982‐996. · Zbl 1360.93567
[11] AdaldoA, AlderisioF, LiuzzaD, et al. Event‐triggered pinning control of switching networks. IEEE Trans Control Netw Syst. 2015;2(2):204‐213. · Zbl 1370.93143
[12] LiuW, HuangJ. Event‐triggered global robust output regulation for a class of nonlinear systems. IEEE Trans Autom Control. 2017;62(11):5923‐5930. · Zbl 1390.93372
[13] XingL, WenC, LiuZ, SuH, CaiJ. Event‐triggered adaptive control for a class of uncertain nonlinear systems. IEEE Trans Autom Control. 2017;62(4):2071‐2076. · Zbl 1366.93305
[14] XingL, WenC, LiuZ, SuH, CaiJ. Event‐triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans Autom Control. 2019;64(1):290‐297. · Zbl 1423.93341
[15] WangL, ChenCP, LiH. Event‐triggered adaptive control of saturated nonlinear systems with time‐varying partial state constraints. IEEE Trans Cybern. 2020;50(4):1485‐1497.
[16] CaoL, ZhouQ, DongG, LiH. Observer‐based adaptive event‐triggered control for nonstrict‐feedback nonlinear systems with output constraint and actuator failures. IEEE Trans Syst Man Cybern Syst. 2019. https://doi.org/10.1109/TSMC.2019.2895858. · doi:10.1109/TSMC.2019.2895858
[17] CaoL, LiH, ZhouQ. Adaptive intelligent control for nonlinear strict‐feedback systems with virtual control coefficients and uncertain disturbances based on event‐triggered mechanism. IEEE Trans Cybern. 2018;48(12):3390‐3402.
[18] LiuYJ, GongM, LiuL, TongS, ChenCP. Fuzzy observer constraint based on adaptive control for uncertain nonlinear MIMO systems with time‐varying state constraints. IEEE Trans Cybern. 2019. https://doi.org/10.1109/TCYB.2019.2933700. · doi:10.1109/TCYB.2019.2933700
[19] LiuW, HuangJ. Global robust practical output regulation for nonlinear systems in output feedback form by output‐based event‐triggered control. Int J Robust Nonlin Control. 2019;29(6):2007‐2025. · Zbl 1416.93177
[20] BoulkrouneA, TadjineM, SaadMM, FarzaM. Fuzzy adaptive controller for MIMO nonlinear systems with known and unknown control direction. Fuzzy Sets Syst. 2010;161(6):797���820. · Zbl 1217.93086
[21] BoulkrouneA, MohammedM, MondherF. Adaptive fuzzy tracking control for a class of MIMO nonaffine uncertain systems. Neurocomputing. 2012;93:48‐55.
[22] ChenM, GeSS, HowB. Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans Neural Netw. 2010;21(5):796‐812.
[23] ShiW. Adaptive fuzzy control for MIMO nonlinear systems with nonsymmetric control gain matrix and unknown control direction. IEEE Trans Fuzzy Syst. 2013;22(5):1288‐1300.
[24] MayneDQ, RawlingsJB, RaoCV, ScokaertP. Constrained model predictive control: stability and optimality. Automatica. 2000;36(6):789‐814. · Zbl 0949.93003
[25] BemporadA. Reference governor for constrained nonlinear systems. IEEE Trans Autom Control. 1998;43(3):415‐419. · Zbl 0906.93024
[26] TangZ, GeSS, TeeKP, HeW. Robust adaptive neural tracking control for a class of perturbed uncertain nonlinear systems with state constraints. IEEE Trans Syst Man Cybern Syst. 2016;46(12):1‐12.
[27] HeW, ChenY, YinZ. Adaptive neural network control of an uncertain robot with full‐state constraints. IEEE Trans. Cybern. 2016;46(3):620‐629.
[28] HeW, HuangH, GeSS. Adaptive neural network control of a robotic manipulator with time‐varying output constraints. IEEE Trans. Cybern. 2017;47(10):3136‐3148.
[29] LiDP, LiuYJ, TongS, ChenCP, LiD. Neural networks‐based adaptive control for nonlinear state constrained systems with input delay. IEEE Trans Cybern. 2018;49(4):1249‐1258.
[30] NgoKB, MahonyR, JiangZP. Integrator backstepping using barrier functions for systems with multiple state constraints. Paper presented at: Proceedings of the 44th IEEE Conference on Decision and Control; Seville, Spain: 2005;8306‐8312.
[31] ZhaoK, SongYD, ShenZ. Neuro‐adaptive fault‐tolerant control of nonlinear systems under output constraints and actuation faults. IEEE Trans Neural Netw Learn Syst. 2018;29(2):286‐298.
[32] ZhaoK, SongYD, MaTD, HeL. Prescribed performance control of uncertain Euler‐Lagrange systems subject to full‐state constraints. IEEE Trans Neural Netw Learn Syst. 2018;29(8):3478‐3489.
[33] JinX. Fault tolerant nonrepetitive trajectory tracking for MIMO output constrained nonlinear systems using iterative learning control. IEEE Trans Cybern. 2018;49(8):3180‐3190.
[34] JinX. Adaptive fixed‐time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions. IEEE Trans Autom Control. 2019;64(7):3046‐3053. · Zbl 1478.93318
[35] ZhaoK, SongYD, ZhangZ. Tracking control of MIMO nonlinear systems under full state constraints: a single‐parameter adaptation approach free from feasibility conditions. Automatica. 2019;55(9):52‐60. · Zbl 1429.93171
[36] ZhaoK, LeiT, LinT, ChenL. Robust adaptive fault‐tolerant quantized control of nonlinear systems with constraints on system behaviors and states. Int J Robust Nonlinear Control. 2020;30(8):3215‐3233. · Zbl 1466.93040
[37] CaoY, WenC, SongY. A unified event‐triggered control approach for uncertain pure‐feedback systems with or without state constraints. IEEE Trans Cybern. 2019. https://doi.org/10.1109/TCYB.2019.2926298. · doi:10.1109/TCYB.2019.2926298
[38] JinX. Adaptive finite‐time fault‐tolerant tracking control for a class of MIMO nonlinear systems with output constraints. Int J Robust Nonlinear Control. 2017;27(5):722‐741. · Zbl 1359.93226
[39] SongYD, GuoJ. Neuro‐adaptive fault‐tolerant tracking control of Lagrange systems pursuing targets with unknown trajectory. IEEE Trans Ind Electron. 2017;64(5):3913‐3920.
[40] ZhangJX, YangGH. Fault‐tolerant leader‐follower formation control of marine surface vessels with unknown dynamics and actuator faults. Int J Robust Nonlinear Control. 2018;28(14):4188‐4208. · Zbl 1401.93010
[41] ZuoZ, WangC. Adaptive trajectory tracking control of output constrained multi‐rotors systems. IET Control Theory Appl. 2015;8(13):1163‐1174.
[42] TeeKP, GeSS, TayEH. Barrier Lyapunov functions for the control of output‐constrained nonlinear systems. Automatica. 2009;45(4):918‐927. · Zbl 1162.93346
[43] ZhaoK, SongYD. Removing the feasibility conditions imposed on tracking control designs for state‐constrained strict‐feedback systems. IEEE Trans Autom Control. 2019;64(3):1265‐1272. · Zbl 1482.93260
[44] ZhaoK, SongYD. Neuroadaptive robotic control under time‐varying asymmetric motion constraints: a feasibility‐condition‐free approach. IEEE Trans Cybern. 2020;50(1):15‐24.
[45] ZhangT, XiaM, YiY. Adaptive neural dynamic surface control of strict‐feedback nonlinear systems with full state constraints and unmodeled dynamics. Automatica. 2017;81(7):232‐239. · Zbl 1372.93125
[46] ZhaoK, SongYD, ChenCP, ChenL. Control of nonlinear systems under dynamic constraints: a unified barrier function‐based approach. Automatica. 2020;56(9):1‐9. · Zbl 1451.93082
[47] ZhaoK, MengWC, SongYD, ChenCP, ChenL. Low‐cost approximation‐based adaptive tracking control of output‐constrained nonlinear systems. IEEE Trans Neural Netw Learn Syst. 2020. https://doi.org/10.1109/TNNLS.2020.3026078. · doi:10.1109/TNNLS.2020.3026078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.