×

Finite element method for epitaxial growth with attachment–detachment kinetics. (English) Zbl 1100.82024

Summary: An adaptive finite element method is developed for a class of free or moving boundary problems modeling island dynamics in epitaxial growth. Such problems consist of an adatom (adsorbed atom) diffusion equation on terraces of different height; boundary conditions on terrace boundaries including the kinetic asymmetry in the adatom attachment and detachment; and the normal velocity law for the motion of such boundaries determined by a two-sided flux, together with the one-dimensional ”surface” diffusion. The problem is solved using two independent meshes: a two-dimensional mesh for the adatom diffusion and a one-dimensional mesh for the boundary evolution. The diffusion equation is discretized by the first-order implicit scheme in time and the linear finite element method in space. A technique of extension is used to avoid the complexity in the spatial discretization near boundaries. All the elements are marked, and the marking is updated in each time step, to trace the terrace height. The evolution of the terrace boundaries includes both the mean curvature flow and the surface diffusion. Its governing equation is solved by a semi-implicit front-tracking method using parametric finite elements. Simple adaptive techniques are employed in solving the adatom diffusion as well as the boundary motion problem. Numerical tests on pure geometrical motion, mass balance, and the stability of a growing circular island demonstrate that the method is stable, efficient, and accurate enough to simulate the growing of epitaxial islands over a sufficiently long time period.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

ALBERT
Full Text: DOI

References:

[1] Bales, G. S.; Zangwill, A., Morphological instability of a terrace edge during step-flow growth, Phys. Rev. B, 41, 9, 5500-5508 (1990)
[2] E. Bänsch, P. Morin, R.H. Nochetto, Finite element methods for surface diffusion, in: Proceedings of International Conference on Free Boundary Problems: Theory and Applications, Trento, 2002 (to appear); E. Bänsch, P. Morin, R.H. Nochetto, Finite element methods for surface diffusion, in: Proceedings of International Conference on Free Boundary Problems: Theory and Applications, Trento, 2002 (to appear) · Zbl 1039.65067
[3] E. Bänsch, P. Morin, R.H. Nochetto, A finite element method for surface diffusion: the parametric case (in preparation); E. Bänsch, P. Morin, R.H. Nochetto, A finite element method for surface diffusion: the parametric case (in preparation) · Zbl 1070.65093
[4] Barabási, A.-L.; Stanley, H. E., Fractal Concepts in Surface Growth (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0838.58023
[5] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics (2001), Cambridge University Press: Cambridge University Press Cambridge, Translated from the 1992 German edition by Larry L. Schumaker · Zbl 0976.65099
[6] Burton, W. K.; Cabrera, N.; Frank, F. C., The growth of crystals and the equilibrium of their surfaces, Philos. Trans. R. Soc. Lond. A, 243, 866, 299-358 (1951) · Zbl 0043.23402
[7] Caflisch, R. E.; E, W.; Gyure, M. F., Kinetic model for a step edge in epitaxial growth, Phys. Rev. E, 59, 6, 6879-6887 (1999)
[8] Caflisch, R. E.; Gyure, M. F.; Merriman, B.; Osher, S.; Ratsch, C.; Vvedensky, D.; Zink, J., Island dynamics and the level set method for epitaxial growth, Appl. Math. Lett., 12, 13-22 (1999) · Zbl 0937.35191
[9] Caflisch, R. E.; Li, B., Analysis of island dynamics in epitaxial growth of thin films, Multiscale Model. Simul., 1, 1, 150-171 (2003) · Zbl 1062.74030
[10] Chen, S.; Merriman, B.; Kang, M.; Caflisch, R. E.; Ratsch, C.; Cheng, L.-T.; Gyure, M.; Fedkiw, R. P.; Anderson, C.; Osher, S., Level set method for thin film epitaxial growth, J. Comput. Phys., 167, 475-500 (2001) · Zbl 0993.74081
[11] Chopp, D.; Sethian, J., Motion by intrinsic Laplacian of curvature, Interfaces Free Boundaries, 1, 107-123 (1999) · Zbl 0938.65144
[12] Dziuk, G., An algorithm for evolutionary surfaces, Numer. Math., 58, 6, 603-611 (1991) · Zbl 0714.65092
[13] Ehrlich, G.; Hudda, F. G., Atomic view of surface diffusion: tungsten on tungsten, J. Chem. Phys., 44, 1036-1099 (1966)
[14] Ghez, R.; Cohen, H. G.; Keller, J. B., The stability of growing or evaporating crystals, J. Appl. Phys., 73, 3685-3693 (1993)
[15] Ghez, R.; Iyer, S. S., The kinetics of fast steps on crystal surfaces and its application to the molecular beam epitaxy of silicon, IBM J. Res. Dev., 32, 804-818 (1988)
[16] Gyure, M. F.; Ratsch, C.; Merriman, B.; Caflisch, R. E.; Osher, S.; Zinck, J.; Vvedensky, D., Level set method for the simulation of epitaxial phenomena, Phys. Rev. E, 58, R6931 (1998)
[17] Herman, M. A.; Sitter, H., Molecular Beam Epitaxy: Fundamentals and Current Status, vol. 7 (1997), Springer: Springer Berlin
[18] Karma, A.; Misbah, C., Competition between noise and determinism in step flow growth, Phys. Rev. Lett., 71, 3810-3813 (1993)
[19] Keller, J. B.; Cohen, H. G.; Merchant, G. J., The stability of rapidly growing crystals, J. Appl. Phys., 73, 3694-3697 (1993)
[20] Khare, S. V.; Einstein, T. L., Unified view of step-edge kinetics and fluctuations, Phys. Rev. B, 57, 8, 4782-4797 (1998)
[21] Khenner, M.; Averbuch, A.; Israeli, M.; Nathan, M., Numerical simulation of grain boundary growing by level set methods, J. Comput. Phys., 170, 764-784 (2001) · Zbl 1112.74457
[22] Krug, J., Four lectures on the physics of crystal growth, Physica A, 318, 47-82 (2002)
[23] B. Li, A. Rätz, A. Voigt, Stability of a circular epitaxial island, Preprint No. 50, SFB 611, Universitt Bonn (2002) (submitted); B. Li, A. Rätz, A. Voigt, Stability of a circular epitaxial island, Preprint No. 50, SFB 611, Universitt Bonn (2002) (submitted) · Zbl 1086.35109
[24] Li, Z.; Zhao, H.; Gao, H., A numerical study of electro-migration voiding by evolving level set functions on a fixed Cartesion grid, J. Comput. Phys., 152, 281-304 (1999) · Zbl 0956.78016
[25] F. Otto, P. Penzler, A. Rätz, T. Rump, A. Voigt, A diffuse interface approximation for step flow in epitaxial growth, Preprint No. 35, to appear in Nonlinearity; F. Otto, P. Penzler, A. Rätz, T. Rump, A. Voigt, A diffuse interface approximation for step flow in epitaxial growth, Preprint No. 35, to appear in Nonlinearity · Zbl 1070.82033
[26] Peterson, M.; Ratsch, C.; Caflisch, R. E.; Zangwill, A., Level set approach to reversible epitaxial growth, Phys. Rev. E, 64, 061602 (2001)
[27] Pierre-Louis, O., Continuum model for low temperature relaxation of crystal shapes, Phys. Rev. Lett., 87, 106104-1-4 (2001)
[28] Pimpinelli, A.; Villain, J., Physics of Crystal Growth (1998), Cambridge University Press: Cambridge University Press Cambridge
[29] Pimpinelli, A.; Villain, J.; Wolf, D. E.; Métois, J. J.; Heyraud, J. C.; Elkinani, I.; Uimin, G., Equilibrium step dynamics on vicinal surfaces, Surf. Sci., 295, 143 (1993)
[30] Politi, P.; Grenet, G.; Marty, A.; Ponchet, A.; Villain, J., Instabilities in crystal growth by atomic or molecular beams, Phys. Rep., 324, 271-404 (2000)
[31] Politi, P.; Villain, J., Ehrlich-Schwoebel instability in molecular-beam epitaxy: a minimal model, Phys. Rev. B, 54, 7, 5114-5129 (1996)
[32] Ratsch, C.; Gyure, M. F.; Caflisch, R. E.; Gibou, F.; Peterson, M.; Kang, M.; Garcia, J.; Vvedensky, D. D., Level-set method for island dynamics in epitaxial growth, Phys. Rev. B, 65, 195403 (2002)
[33] A. Rätz, A. Voigt, A phase-field model for attachment-detachment kinetics in epitaxial growth, Preprint No. 36, to appear in Euro. J. Appl. Math; A. Rätz, A. Voigt, A phase-field model for attachment-detachment kinetics in epitaxial growth, Preprint No. 36, to appear in Euro. J. Appl. Math
[34] Schmidt, A., Computation of three dimensional dendrites with finite elements, J. Comput. Phys, 125, 293-312 (1996) · Zbl 0844.65096
[35] Schmidt, A.; Siebert, K. G., Albert – software for scientific computations and applications, Acta Math. Univ. Comenianae, 70, 105-122 (2001) · Zbl 0993.65134
[36] Schwoebel, R. L., Step motion on crystal surfaces II, J. Appl. Phys., 40, 614-618 (1969)
[37] Schwoebel, R. L.; Shipsey, E. J., Step motion on crystal surfaces, J. Appl. Phys., 37, 3682-3686 (1966)
[38] P. Smereka, Semi-implicit level set methods for motion by mean curvature and surface diffusion (2002) (preprint); P. Smereka, Semi-implicit level set methods for motion by mean curvature and surface diffusion (2002) (preprint)
[39] A.-K. Tornberg, Interface tracking methods with application to multiphase flows, Ph.D. Thesis, NADA, KTH, Stockholm, Sweden, 2000; A.-K. Tornberg, Interface tracking methods with application to multiphase flows, Ph.D. Thesis, NADA, KTH, Stockholm, Sweden, 2000 · Zbl 0987.76056
[40] Tsao, J. Y., Materials Fundamentals of Molecular Beam Epitaxy (1993), Academic Press: Academic Press New York
[41] Villain, J., Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I, 1, 19-42 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.