×

Adaptive neural network backstepping control method for aerial manipulator based on coupling disturbance compensation. (English) Zbl 1539.93093

Summary: The aerial manipulator, designed for complex aerial tasks, encounters multifaceted operational environments influenced by various internal and external disturbances. This paper introduces an adaptive neural network backstepping control technique fortified with coupling disturbance compensation to enhance the resilience of the aerial manipulator against these disturbances. Firstly, we propose a cutting-edge coupling disturbance feedforward compensator based on variable inertia parameters, which offers precise and prompt compensation for significant internal coupling disturbances without needing external sensors or alternative disturbance estimation techniques. Subsequently, radial basis function neural networks with an online adaptive weight updating mechanism are designed to estimate and counteract lumped disturbances stemming from unmodeled dynamics, uncertainties, and external factors in real-time. Utilizing the Lyapunov stability criteria, we validate that the aerial manipulator can reliably track desired trajectories under our proposed controller. Experimental results and simulations further underscore the effectiveness and superiority of our control approach.

MSC:

93C40 Adaptive control/observation systems
93C85 Automated systems (robots, etc.) in control theory
68T07 Artificial neural networks and deep learning
Full Text: DOI

References:

[1] Ruggiero, F.; Lippiello, V.; Ollero, A., Aerial manipulation: A literature review, IEEE Robot. Autom. Lett., 3, 3, 1957-1964, 2018
[2] Khamseh, H. B.; Janabi-Sharifi, F.; Abdessameud, A., Aerial manipulation-a literature survey, Robot. Auton. Syst., 107, 221-235, 2018
[3] Korpela, C.; Orsag, M.; Oh, P., Towards valve turning using a dual-arm aerial manipulator, (IEEE/RSJ International Conference on Intelligent Robots and Systems 2014, 2014), 3411-3416
[4] Chermprayong, P.; Zhang, K.; Xiao, F.; Kovac, M., An integrated delta manipulator for aerial repair: A new aerial robotic system, IEEE Robot. Autom. Mag., 26, 1, 54-66, 2019
[5] Tognon, M.; Chávez, H. A.T.; Gasparin, E.; Sablé, Q.; Bicego, D.; Mallet, A.; Lany, M.; Santi, G.; Revaz, B.; Cortés, J.; Franchi, A., A truly-redundant aerial manipulator system with application to push-and-slide inspection in industrial plants, IEEE Robot. Autom. Lett., 4, 2, 1846-1851, 2019
[6] Kutia, J. R.; Stol, K. A.; Xu, W., Canopy sampling using an aerial manipulator: A preliminary study, (International Conference on Unmanned Aircraft Systems. International Conference on Unmanned Aircraft Systems, ICUAS, 2015, 2015), 477-484
[7] Baizid, K.; Giglio, G.; Pierri, F.; Trujillo, M. A.; Antonelli, G.; Caccavale, F.; Viguria, A.; Chiaverini, S.; Ollero, A., Behavioral control of unmanned aerial vehicle manipulator systems, Auton. Robots, 41, 5, 1203-1220, 2017
[8] Muscio, G.; Pierri, F.; Trujillo, M. A.; Cataldi, E.; Antonelli, G.; Caccavale, F.; Viguria, A.; Chiaverini, S.; Ollero, A., Coordinated control of aerial robotic manipulators: theory and experiments, IEEE Trans. Control Syst. Technol., 26, 4, 1406-1413, 2017
[9] Lippiello, V.; Cacace, J.; Santamaria-Navarro, A.; Andrade-Cetto, J.; Trujillo, M.Ã.; Rodríguez Esteves, Y. R.; Viguria, A., Hybrid visual servoing with hierarchical task composition for aerial manipulation, IEEE Robot. Autom. Lett., 1, 1, 259-266, 2016
[10] Ollero, A.; Tognon, M.; Suarez, A.; Lee, D.; Franchi, A., Past, present, and future of aerial robotic manipulators, IEEE Trans. Robot., 38, 1, 626-645, 2022
[11] Chen, Y.; Liang, J.; Wu, Y.; Miao, Z.; Zhang, H.; Wang, Y., Adaptive sliding-mode disturbance observer-based finite-time control for unmanned aerial manipulator with prescribed performance, IEEE Trans. Cybern., 53, 5, 3263-3276, 2023
[12] Zhang, G.; He, Y.; Dai, B.; Gu, F.; Han, J.; Liu, G., Robust control of an aerial manipulator based on a variable inertia parameters model, IEEE Trans. Ind. Electron., 67, 11, 9515-9525, 2019
[13] Cao, H.; Wu, Y.; Wang, L., Adaptive nn motion control and predictive coordinate planning for aerial manipulators, Aerosp. Sci. Technol., 126, Article 107607 pp., 2022
[14] Kim, S.; Choi, S.; Kim, H.; Shin, J.; Shim, H.; Kim, H. J., Robust control of an equipment-added multirotor using disturbance observer, IEEE Trans. Control Syst. Technol., 26, 4, 1524-1531, 2018
[15] Fanni, M.; Khalifa, A., A new 6-dof quadrotor manipulation system: design, kinematics, dynamics, and control, IEEE/ASME Trans. Mechatron., 22, 3, 1315-1326, 2017
[16] Cao, H.; Li, Y.; Liu, C.; Zhao, S., Eso-based robust and high-precision tracking control for aerial manipulation, IEEE Trans. Autom. Sci. Eng., 1-17, 2023
[17] Song, F.; Li, Z.; Yu, X., A feedforward quadrotor disturbance rejection method for visually identified gust sources based on transfer reinforcement learning, IEEE Trans. Aerosp. Electron. Syst., 59, 5, 6612-6623, 2023
[18] Buzzato, J.; Hernandes, A.; Becker, M.; d. P. Caurin, G., Aerial manipulation with six-axis force and torque sensor feedback compensation, (2018 Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE), 2018, IEEE), 158-163
[19] Lee, H.; Kim, H. J., Estimation, control, and planning for autonomous aerial transportation, IEEE Trans. Ind. Electron., 64, 4, 3369-3379, 2017
[20] Kim, S.; Seo, H.; Choi, S.; Kim, H. J., Vision-guided aerial manipulation using a multirotor with a robotic arm, IEEE/ASME Trans. Mechatronics, 21, 4, 1912-1923, 2016
[21] Liu, Y.-C.; Huang, C.-Y., Ddpg-based adaptive robust tracking control for aerial manipulators with decoupling approach, IEEE Trans. Cybern., 52, 8, 8258-8271, 2021
[22] Wang, B.; Ma, Z.; Lai, S.; Zhao, L., Neural moving horizon estimation for robust flight control, IEEE Trans. Robot., 40, 639-659, 2024
[23] Gao, H.; Li, Z.; Yu, X.; Qiu, J., Hierarchical multi-objective heuristic for pcb assembly optimization in a beam-head surface mounter, IEEE Trans. Cybern., 52, 7, 6911-6924, 2022
[24] Yang, X.; Zheng, X.; Gao, H., Sgd-based adaptive nn control design for uncertain nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 29, 10, 5071-5083, 2018
[25] Yu, H.; Xie, T.; Paszczyñski, S.; Wilamowski, B. M., Advantages of radial basis function networks for dynamic system design, IEEE Trans. Ind. Electron., 58, 12, 5438-5450, 2011
[26] Yang, X.; Zheng, X., Adaptive nn backstepping control design for a 3-dof helicopter: Theory and experiments, IEEE Trans. Ind. Electron., 67, 5, 3967-3979, 2020
[27] Tee, K. P.; Ge, S. S.; Tay, F. E., Adaptive neural network control for helicopters in vertical flight, IEEE Trans. Control Syst. Technol., 16, 4, 753-762, 2008
[28] Craig, J. J., Introduction to Robotics: Mechanics and Control, 2005, Pearson Educacion
[29] Khalil, H. K., Nonlinear Systems, 2002, Pearson Education: Pearson Education Prentice Hall · Zbl 1003.34002
[30] Park, J.; Sandberg, I. W., Universal approximation using radial-basis-function networks, Neural Comput., 3, 2, 246-257, 1991
[31] Zheng, X.; Yang, X., Command filter and universal approximator based backstepping control design for strict-feedback nonlinear systems with uncertainty, IEEE Trans. Automat. Control, 65, 3, 1310-1317, 2019 · Zbl 1533.93822
[32] Biehl, M.; Schwarze, H., Learning by on-line gradient descent, J. Phys. A, 28, 3, 643, 1995 · Zbl 0960.68635
[33] Huang, J.-T., Hybrid-based adaptive nn backstepping control of strict-feedback systems, Automatica, 45, 6, 1497-1503, 2009 · Zbl 1166.93335
[34] Yin, S.; Yang, H.; Gao, H.; Qiu, J.; Kaynak, O., An adaptive nn-based approach for fault-tolerant control of nonlinear time-varying delay systems with unmodeled dynamics, IEEE Trans. Neural Netw. Learn. Syst., 28, 8, 1902-1913, 2017
[35] Farrell, J.; Polycarpou, M., Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control, 2006, Wiley
[36] Zheng, X.; Yu, X.; Jiang, J.; Yang, X., Practical finite-time command filtered backstepping with its application to dc motor control systems, IEEE Trans. Ind. Electron., 71, 3, 2955-2964, 2024
[37] Li, H.; Li, Z.; Zheng, X.; Liu, J., Adaptive neural network backstepping control method for aerial manipulator based on variable inertia parameter modeling, 2019, arXiv preprint arXiv:2212.04250
[38] Shabana, A., Dynamics of Multibody Systems, 2003, Cambridge University Press
[39] Miller, S.; Wendlandt, J., Real-time simulation of physical systems using simscape, (MATLAB News and Notes, 2010), 1-13
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.