×

Adaptive fuzzy tracking control for stochastic nonlinear systems with unknown time-varying delays. (English) Zbl 1338.93210

Summary: This paper addresses the problem of adaptive tracking control for a class of stochastic strict-feedback nonlinear time-varying delays systems using fuzzy logic systems (FLS). In this paper, quadratic functions are used as Lyapunov functions to analyze the stability of systems, other than the fourth moment approach proposed by H. Deng and M. Krstic, and the hyperbolic tangent functions are introduced to deal with the Hessian terms. This approach overcomes the drawback of the traditional quadratic moment approach and reduce the complexity of design procedure and controller. Based on the backstepping technique, the appropriate Lyapunov-Krasovskii functionals and the FLS, the adaptive fuzzy controller is well designed. The proposed adaptive fuzzy controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error can converge to a small residual set around the origin in the mean square sense.

MSC:

93C42 Fuzzy control/observation systems
93E35 Stochastic learning and adaptive control
Full Text: DOI

References:

[1] Mao, X., LaSalle-type theorem for stochastic differential delay equations, J. Math. Anal. Appl., 236, 2, 350-369 (1999) · Zbl 0958.60057
[2] Zhang, Z. Q.; Xu, S. Y.; Zhang, B. Y., Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity, IEEE Trans. Autom. Control, 59, 5, 1336-1341 (2014) · Zbl 1360.93305
[3] Zhang, Z. Q.; Lu, J. W.; Xu, S. Y., Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays, Int. J. Robust Nonlinear Control, 22, 14, 1631-1646 (2012) · Zbl 1274.93163
[4] Deng, H.; Krstic, M., Stochastic nonlinear stabilization, Part II: inverse optimality, Syst. Control Lett., 32, 3, 151-159 (1997) · Zbl 0902.93050
[5] Tian, J.; Xie, X. J., Adaptive state-feedback stabilization for high-order stochastic systems with nonlinear parameterization, Automatica, 45, 1, 126-133 (2009) · Zbl 1154.93427
[6] Pan, Z. G.; Basar, T., Adaptive controller design for tracking and disturbance attenuation in parametric strict-feedback nonlinear systems, IEEE Trans. Autom. Control, 43, 8, 1066-1083 (1998) · Zbl 0957.93046
[7] Liu, Y.; Zhang, J., Practical output feedback risk-sensitive control for stochastic nonlinear systems under stable zero-dynamics, SIAM J. Control Optim., 45, 3, 885-926 (2006) · Zbl 1117.93067
[8] Ge, S. S.; Tee, K. P., Approximation-based control of nonlinear MIMO time-delay systems, Automatica, 43, 1, 31-43 (2007) · Zbl 1137.93042
[9] Wang, L. X., Adaptive Fuzzy Systems and Control Design and Stability Analysis (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[10] Liu, S. J.; Zhang, J. F.; Jiang, Z. P., Decentralized adaptive output feedback stabilization for large-scale stochastic nonlinear systems, Automatica, 43, 2, 238-251 (2007) · Zbl 1115.93076
[11] Li, J.; Chen, W. S.; Li, J. M.; Fang, Y. Q., Adaptive NN output-feedback stabilization for a class of strict-feedback stochastic nonlinear systems, ISA Trans., 48, 4, 468-475 (2009)
[12] Arslan, G.; Basar, T., Risk-sensitive adaptive trackers for strict feedback systems with output measurements, IEEE Trans. Autom. Control, 47, 10, 1754-1758 (2002) · Zbl 1364.93745
[13] Lin, W.; Qian, C. J., Adaptive control of nonlinearly parameterized systems: a nonsmooth feedback framework, IEEE Trans. Automa. Control, 47, 5, 757-774 (2002) · Zbl 1364.93400
[14] Zhang, T. P.; Ge, S. S., Adaptive neural control of MIMO nonlinear state time-varying delay systems with unknown dead-zones and gain signs, Automatica, 43, 6, 1021-1033 (2007) · Zbl 1282.93152
[15] Yu, W. W.; Yao, L. L., Global robust stability of neural networks with time varying delays, J. Comput. Appl. Math., 206, 2, 679-687 (2007) · Zbl 1115.37017
[16] Li, Y.; Li, Y. M.; Tong, S. C., Adaptive fuzzy decentralized output feedback control for stochastic nonlinear large-scale systems, Neurocomputing, 83, 38-46 (2012)
[17] Xie, X. J.; Tian, J., State-feedback stabilization for high-order stochastic nonlinear systems with stochastic inverse dynamics, emphInt, J. Robust Nonlinear Control, 17, 14, 1343-1362 (2007) · Zbl 1127.93354
[18] Liu, Y.; Pan, Z.; Shi, S., Output feedback control design for strict feedback stochastic nonlinear systems under a risk-sensitive cost, IEEE Trans. Autom. Control, 48, 3, 509-514 (2003) · Zbl 1364.93283
[19] Krstic, M.; Deng, H., Stabilization of Nonlinear Uncertain Systems, London (1998), Springer-Verlag: Springer-Verlag U.K. · Zbl 0906.93001
[20] Khasminskii, R. Z., Stochastic Stability of Differential Equations (1980), Sijthoff and Noordhoff: Sijthoff and Noordhoff Rockville, MD · Zbl 1259.60058
[21] Deng, H.; Krstic, M.; Williams, R. J., Stabilization of stochastic nonlinear systems driven by noise of unknown covariance, IEEE Trans. Autom. Control, 46, 8, 1237-1253 (2001) · Zbl 1008.93068
[22] Kristic, M.; Kanellakopoulos, I.; Kok-otovic, P. V., Nonlinear and Adaptive Control Design (1995), Wiley: Wiley New York
[23] Ji, H. B.; Xi, H. S., Adaptive output-feedback tracking of stochastic nonlinear systems, IEEE Trans. Autom. Control, 51, 2, 355-360 (2006) · Zbl 1366.93620
[24] Chen, W. S.; Jiao, L. C.; Li, J.; Li, R. H., Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 40, 3, 939-950 (2010)
[25] Wang, M.; Chen, B., Adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear time-delay systems, Fuzzy Sets Syst., 159, 8, 949-967 (2008) · Zbl 1170.93349
[26] Wang, M.; Chen, B., Adaptive fuzzy tracking control of nonlinear time-delay systems with unknown virtual control coefficients, Inf. Sci., 178, 22, 4326-4340 (2008) · Zbl 1148.93324
[27] Liu, S. J.; Ge, S. Z.; Zhang, J. F., Adaptive output-feedback control for a class of uncertain stochastic nonlinear systems with time delays, Int. J. Control, 81, 8, 1210-1220 (2008) · Zbl 1152.93404
[28] Yu, J. J.; Zhang, K. J.; Fei, S. M., Adaptive fuzzy tracking control of a class of stochastic nonlinear systems with unknown dead-zone Input, Int. J. Fuzzy Syst., 10, 1, 18-23 (2008)
[29] Tseng, C. S.; Li, Y. F.; Chiang, Y. F., \(H_\infty\) Fuzzy control design for nonlinear stochastic fuzzy systems, Int. J. Fuzzy Syst., 9, 1, 38-44 (2007)
[30] Yu, Z.; Jin, Z.; Du, H., Adaptive neural control for a class of non-affine stochastic non-linear systems with time-varying delay: A Razumikhin-Nussbaum method, IET Control Theory Appl., 6, 1, 14-23 (2012)
[31] Tong, S. C.; Li, Y.; Li, Y. M.; Liu, Y. J., Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 41, 6, 1693-1704 (2011)
[32] Yu, Z. X.; Li, S. G., Neural-network-based output-feedback adaptive dynamic surface control for a class of stochastic nonlinear time-delay systems with unknown control directions, Neurocomputing (2013)
[33] Gao, Y.; Tong, S. C.; Li, Y. M., Adaptive fuzzy backstepping output feedback control for a class of uncertain stochastic nonlinear system in pure-feedback form, Neurocomputing, 122, 126-133 (2013)
[34] Sui, S.; Tong, S. C.; Li, Y. M., Observer-based adaptive fuzzy decentralized control for stochastic large-scale nonlinear systems with unknown dead-zones, Inform. Sciences, 259, 71-86 (2014) · Zbl 1327.93361
[35] Wang, H. Q.; Chen, B.; Liu, X. P.; Liu, K. F.; Lin, C., Adaptive neural tracking control for stochastic nonlinear strict-feedback systems with unknown input saturation, Inform. Sciences, 269, 300-315 (2014) · Zbl 1339.93104
[36] Hua, C. C.; Wang, Q. G.; Guan, X. P., Adaptive fuzzy output-feedback controller design for nonlinear time-delay systems with unknown control direction, IEEE Trans. Syst. Man Cybern. Part B: Cybern., 39, 2, 363-374 (2009)
[37] Hua, C.; Guan, X.; Shi, P., Robust backstepping control for a class of time delayed systems, IEEE Trans. Autom. Control, 50, 894-899 (2005) · Zbl 1365.93054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.