×

Modeling and adaptive tracking for stochastic nonholonomic constrained mechanical systems. (English) Zbl 1416.93120

Summary: This paper is devoted to the problem of modeling and trajectory tracking for stochastic nonholonomic dynamic systems in the presence of unknown parameters. Prior to tracking controller design, the rigorous derivation of stochastic nonholonomic dynamic model is given. By reasonably introducing so-called internal state vector, a reduced dynamic model, which is suitable for control design, is proposed. Based on the backstepping technique in vector form, an adaptive tracking controller is then derived, guaranteeing that the mean square of the tracking error converges to an arbitrarily small neighborhood of zero by tuning design parameters. The efficiency of the controller is demonstrated by a mechanics system: a vertical mobile wheel in random vibration environment.

MSC:

93C40 Adaptive control/observation systems
93E15 Stochastic stability in control theory
93E03 Stochastic systems in control theory (general)
70Q05 Control of mechanical systems
Full Text: DOI

References:

[1] C. Altafini, A. Speranzon, B. Wahlberg, A feedback control scheme for reversing a truck and trailer vehicle, IEEE Trans. Robot. Autom., 17(6):915-922, 2001.
[2] M.D. Berkemeier, R.S. Fearing, Tracking fast inverted trajectories of the underactuated acrobot, IEEE Trans. Robot. Autom., 15(4):740-750, 1999.
[3] M.M. Bridges, D.M. Dawson, Z. Qu, S.C. Martindale, Robust control of rigid-link flexiblejoint robots with redundant joint actuators, IEEE Trans. Syst. Man Cybern., 24(7):961-970, 1994. http://www.mii.lt/NA Modeling and tracking control for stochastic nonholonomic systems183
[4] Y.C. Chang, B.S. Chen, Robust tracking designs for both holonomic and nonholonomic constrained mechanical systems: Adaptive fuzzy approach, IEEE Trans. Fuzzy Syst., 8(1):46- 66, 2000.
[5] M.Y. Cui, Z.J. Wu, X.J. Xie, P. Shi, Modeling and adaptive tracking for a class of stochastic Lagrangian control systems, Automatica, 49(3):770-779, 2013. · Zbl 1267.93161
[6] C. Fernandes, L. Gurvits, Z.X. Li, Near-optimal nonholonomic motion planning for a system of coupled rigid bodies, IEEE Trans. Autom. Control, 39(3):450-463, 1994. · Zbl 0925.93630
[7] J. Fu, T.Y. Chai, C.Y. Su, Y. Jin, Motion/force tracking control of nonholonomic mechanical systems via combining cascaded design and backstepping, Automatica, 49(12):3682-3686, 2013. · Zbl 1315.93037
[8] F.Z. Gao, F.S. Yuan, Adaptive stabilization of stochastic nonholonomic systems with nonlinear parameterization, Appl. Math. Comput., 219(16):8676-8686, 2013. · Zbl 1287.93105
[9] X.S. Ge, L.Q. Chen, Attitude control of a rigid spacecraft with two momentum wheel actuators using genetic algorithm, Acta Astronaut., 55(1):3-8, 2004.
[10] Z.P. Jiang, H. Nijmeijer, A recursive technique for tracking control of nonholonomic systems in chained form, IEEE Trans. Autom. Control, 44(2):265-279, 1999. · Zbl 0978.93046
[11] Z.J. Li, S.S. Ge, A.G. Ming, Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators, IEEE Trans. Syst. Man Cybern., 37(3):607-616, 2007.
[12] W. Lin, C.J. Qian, Adaptive control of nonlinearly parameterized systems: A nonsmooth feedback framework, IEEE Trans. Autom. Control, 47(5):757-774, 2002. · Zbl 1364.93400
[13] S.J. Liu, M. Krstic, Stochastic source seeking for nonholonomic unicycle, Automatica, 46(9):1443-1453, 2010. · Zbl 1202.93174
[14] Y.L. Liu, Y.Q. Wu, Output feedback control for stochastic nonholonomic systems with growth rate restriction, Asian J. Control, 13(1):177-185, 2011. · Zbl 1248.93137
[15] L. Liu, X.J. Xiu, Output-feedback stabilization for stochastic high-order nonlinear systems with time-varying delay, Automatica, 47(12):2772-2779, 2011. · Zbl 1235.93208
[16] F.X. Mei, H.B. Wu, Dynamics of Constrained Mechanical Systems, Beijing Institute of Technology Press, Beijing, 2009.
[17] R.M. Murray, S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids, IEEE Trans. Autom. Control, 38(5):700-716, 1993. · Zbl 0800.93840
[18] M. Oya, C.Y. Su, R. Katoh, Robust adaptive motion/force control of uncertain nonholonomic mechanical systems, IEEE Trans. Robot. Autom., 19(1):175-181, 2003.
[19] B. Øksendal, Stochastic Differential Equations an Introduction with Applications, 6th ed., Springer, New York, 2003. · Zbl 1025.60026
[20] D. Tilbury, R.M. Murry, S.S. Sastry, Trajectory generation for the N -trailer problem using Goursat normal form, IEEE Trans. Autom. Control, 40(5):802-819, 1995. · Zbl 0826.93046
[21] J. Wang, H.Q. Gao, H.Y. Li, Adaptive robust control of nonholonomic systems with stochastic disturbances, Sci. China, Ser. F, 49(2):189-207, 2006. Nonlinear Anal. Model. Control, 21(2):166-184 184Z. Zhang, Y. Wu · Zbl 1117.93027
[22] Z.P. Wang, T. Zhou, Y. Mao, Q.J. Chen, Adaptive recurrent neural network control of uncertain constrained nonholonomic mobile manipulators, Int. J. Syst. Sci., 45(2):133-144, 2014. · Zbl 1307.93281
[23] Z.J. Wu, M.Y. Cui, P. Shi, Backstepping control in vector form for stochastic Hamiltonian systems, SIAM J. Control Optim., 50(2):925-942, 2012. · Zbl 1247.60087
[24] Y. Zhao, J.B. Yu, Y.Q. Wu, State-feedback stabilization for a class of more general high order stochastic nonholonomic systems, Int. J. Adapt. Control Signal Process., 25(8):687-706, 2011. · Zbl 1227.93100
[25] W.Q. Zhu, Nonlinear Stochastic Dynamics and Control: A Framework of Hamiltonian Theory, Science Press, Beijing, 2003 (in Chinese).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.