×

Effect of diffusion layers and defect layer on acoustic phonons transport through the structure consisting of different films. (English) Zbl 1221.82114

Summary: By using the continuum elastic approximation model and the transfer matrix method, we investigate the effect of diffusion layers and defect layer on acoustic phonons transport through the structure consisting of different films. Our work shows that most acoustic phonons can easily pass the structure, but some only have much less transmission probabilities and form corresponding dips in the transmission spectrum. With the change of the structure parameters such as the width of diffusion layers and defect layer, the number of unit cell and the density of containing Al in diffusion layers and defect layer, the magnitude of the frequencies of acoustic phonons corresponding to the dips almost remain unchanged, but the transmission coefficients corresponding to the dips change at different degree, and the transmission probabilities of some frequencies are very sensitive to the variation of the above-mentioned structure parameters. These results can provide some references in controlling the transmission coefficients of acoustic phonons, devising parts of acoustic apparatus and theoretical investigation related.

MSC:

82D20 Statistical mechanics of solids
74H15 Numerical approximation of solutions of dynamical problems in solid mechanics
82C24 Interface problems; diffusion-limited aggregation in time-dependent statistical mechanics
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Lee, S. M.; Cahill, D. G.; Venkatasubramanian, R., Appl. Phys. Lett., 70, 2957 (1997)
[2] Chen, G., Phys. Rev. B, 57, 14958 (1998)
[3] Bies, W. E.; Radtke, R. J.; Ehrenreich, H., J. Appl. Phys., 88, 1498 (2000)
[4] Simkin, M. V.; Mahan, G. D., Phys. Rev. Lett., 84, 927 (2000)
[5] Li, W.-X.; Chen, K.-Q.; Duan, W.; Wu, J.; Gu, B.-L., J. Phys. D: Appl. Phys., 36, 3027 (2003)
[6] Li, W.-X.; Chen, K.-Q.; Duan, W.; Wu, J.; Gu, B.-L., J. Phys.: Condens. Matter, 16, 5049 (2004)
[7] Camley, R. E.; Djafari-Rouhani, B.; Dobrzynski, L.; Maraduin, A. A., Phys. Rev. B, 27, 7318 (1983)
[8] Tamura, S.; Wolfe, J. P., Phys. Rev. B, 38, 5610 (1988)
[9] Bria, D.; El Boudouti, E. H.; Nougaoui, A.; Djafari-Rouhani, B.; Velasco, V. R., Phys. Rev. B, 61, 15858 (2000)
[10] El Boudouti, E. H.; Djafarii-Rouhan, B.; Khourdifi, E. M.; Dobrzynski, L., Phys. Rev. B, 48, 10978 (1993)
[11] Mizuno, S.; Tamura, S. I., Phys. Rev. B, 45, 13423 (1992)
[12] Mizuno, S.; Tamura, S. I., Phys. Rev. B, 53, 4549 (1996)
[13] Pereyra, P., Ann. Phys., 320, 1 (2005) · Zbl 1078.81525
[14] Peroz-Alvarez, R.; Garlia-Moliner, F.; Velasco, V. R., J. Phys.: Condens. Matter, 7, 2037 (1995)
[15] El Boudouti, E. H.; Djafari-Rouhani, B.; Akjouj, A.; Dobrzynski, L., Phys. Rev. B, 54, 14728 (1996)
[16] Sun, J.-H.; Wu, T.-T., Phys. Rev. B, 74, 174305 (2006)
[17] Khelif, A.; Djafari-Rouhani, B.; Vasseur, J. O.; Deymier, P. A., Phys. Rev. B, 68, 024302 (2003)
[18] Jusserand, B.; Paquet, D.; Mollot, F.; Alexandre, F.; le Roux, G., Phys. Rev. B, 35, 2808 (1987)
[19] Lockwood, D. J.; Devine, R. L.S.; Rodriguez, A.; Mendialdua, T.; Djafari Rouhani, B.; Dobrzynski, L., Phys. Rev. B, 47, 13553 (1993)
[20] Bartels, A.; Dekorsy, T.; Kurz, H.; Kohler, K., Phys. Rev. Lett., 82, 1044 (1999)
[21] Santos, P. V.; Ley, L.; Mebert, J.; Koblinger, O., Phys. Rev. B, 36, 4858 (1987)
[22] Tamura, S.; Wolfe, J. P., Phys. Rev. B, 35, 2528 (1987)
[23] Mizoguchi, K.; Matsutani, K.; Nakachima, S.; Dekorsy, T.; Kurz, H.; Nakayama, M., Phys. Rev. B, 55, 9936 (1997)
[24] Mishina, T.; Iwazaki, Y.; Masumoto, Y.; Nakayama, M., Solid State Commun., 107, 281 (1998)
[25] Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Sobolewski, R., Phys. Rev. B, 76, 085210 (2007)
[26] Chen, K.-Q.; Wang, X.-H.; Gu, B.-Y., Phys. Rev. B, 61, 12075 (2000)
[27] El Boudouti, E. H.; Djafari-Rouhani, B.; Khourdifi, E. M.; Dobrzynski, L., Phys. Rev. B, 48, 10987 (1993)
[28] Djafari-Rouhani, B.; El Boudouti, E. H.; Khourdifi, E. M.; Dobrzynski, L., Vacuum, 45, 341 (1994)
[29] Bria, D.; El Boudouti, E. H.; Nougaoui, A.; Djafari-Rouhani, B.; Velasco, V. R., Phys. Rev. B, 61, 15858 (2000)
[30] Chen, K.-Q.; Li, W.-X.; Duan, W.; Shuai, Z.; Gu, B.-L., Phys. Rev. B, 72, 45422 (2005)
[31] Huang, W.-Q.; Chen, K.-Q.; Shuai, Z.; Wang, L.; Hu, W., Phys. Lett. A, 336, 245 (2005) · Zbl 1136.81380
[32] Tang, L.-M.; Wang, L.-L.; Chen, K.-Q.; Huang, W.-Q.; Zou, B. S., Appl. Phys. Lett., 88, 163505 (2006)
[33] Peng, X.-F.; Chen, K.-Q.; S Zou, B., Appl. Phys. Lett., 90, 193502 (2007)
[34] Nie, L.-Y.; Wang, L.; Zhao, L. H.; Chen, K.-Q., Phys. Lett. A, 364, 343 (2007)
[35] Sengupta, S.; Chakrabarti, A., Physica E, 28, 28-36 (2005)
[36] Hurley, D. C.; Tamura, S.; Wolfe, J. P.; Morkoo, H., Phys. Rev. Lett., 58, 2446 (1987)
[37] Adachi, S., J. Appl. Phys., 58, R1 (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.