×

\(K\)-theory of Hermitian Mackey functors, real traces, and assembly. (English) Zbl 1440.19001

Summary: We define a \(\mathbb{Z}/2\)-equivariant real algebraic \(K\)-theory spectrum \(\mathrm{KR}(A)\), for every \(\mathbb{Z}/2\)-equivariant spectrum \(A\) equipped with a compatible multiplicative structure. This construction extends the real algebraic \(K\)-theory of L. Hesselholt and I. Madsen [Real algebraic \(K\)-theory. Preprint] for discrete rings, and the Hermitian \(K\)-theory of Burghelea and Fiedorowicz [1985] for simplicial rings. It supports a trace map of \(\mathbb{Z}/2\)-spectra \(\mathrm{tr}:\mathrm{KR}(A)\to\mathrm{THR}(A)\) to the real topological Hochschild homology spectrum, which extends the \(K\)-theoretic trace of M. Bökstedt et al. [Invent. Math. 111, No. 3, 465–539 (1993; Zbl 0804.55004)].
We show that the trace provides a splitting of the real \(K\)-theory of the spherical group-ring. We use the splitting induced on the geometric fixed points of \(\mathrm{KR}\), which we regard as an \(L\)-theory of \(\mathbb{Z}/2\)-equivariant ring spectra, to give a purely homotopy theoretic reformulation of the Novikov conjecture on the homotopy invariance of the higher signatures, in terms of the module structure of the rational \(L\)-theory of the “Burnside group-ring”.

MSC:

19D55 \(K\)-theory and homology; cyclic homology and cohomology
19G24 \(L\)-theory of group rings
19G38 Hermitian \(K\)-theory, relations with \(K\)-theory of rings
11E81 Algebraic theory of quadratic forms; Witt groups and rings

Citations:

Zbl 0804.55004

References:

[1] 10.1093/qmath/17.1.367 · Zbl 0146.19101 · doi:10.1093/qmath/17.1.367
[2] ; Bak, K-theory of forms. Annals of Mathematics Studies, 98 (1981) · Zbl 0465.10013
[3] 10.1073/pnas.86.22.8607 · Zbl 0684.55013 · doi:10.1073/pnas.86.22.8607
[4] 10.1007/BF01231296 · Zbl 0804.55004 · doi:10.1007/BF01231296
[5] ; Burghelea, J. Math. Pures Appl. (9), 64, 175 (1985) · Zbl 0597.18006
[6] 10.1016/0166-8641(93)90014-5 · Zbl 0815.57025 · doi:10.1016/0166-8641(93)90014-5
[7] 10.1017/S1474748015000067 · Zbl 1365.19005 · doi:10.1017/S1474748015000067
[8] 10.2140/agt.2016.16.325 · Zbl 1341.55001 · doi:10.2140/agt.2016.16.325
[9] 10.1016/0022-4049(95)00089-5 · Zbl 0856.19004 · doi:10.1016/0022-4049(95)00089-5
[10] ; Dundas, The local structure of algebraic K-theory. Algebra and Applications, 18 (2013) · Zbl 1272.55002
[11] 10.1090/memo/0543 · Zbl 0876.55003 · doi:10.1090/memo/0543
[12] 10.2140/agt.2017.17.2565 · Zbl 1383.55013 · doi:10.2140/agt.2017.17.2565
[13] 10.1016/0040-9383(96)00003-1 · Zbl 0866.55002 · doi:10.1016/0040-9383(96)00003-1
[14] 10.4007/annals.2016.184.1.1 · Zbl 1366.55007 · doi:10.4007/annals.2016.184.1.1
[15] ; Karoubi, Algebraic K-theory, III : Hermitian K-theory and geometric applications. Lecture Notes in Math., 343, 301 (1973)
[16] 10.2307/1971326 · Zbl 0478.18008 · doi:10.2307/1971326
[17] 10.1007/b137100 · doi:10.1007/b137100
[18] 10.24033/asens.1312 · Zbl 0362.18014 · doi:10.24033/asens.1312
[19] 10.1016/0001-8708(87)90032-6 · Zbl 0627.18006 · doi:10.1016/0001-8708(87)90032-6
[20] ; May, Théorie de l’homotopie. Astérisque, 191, 239 (1990)
[21] ; Novikov, 31 Invited Addresses (8 in Abstract) at the International Congress of Mathematicians. Amer. Math. Soc. Translations Ser. 2, 70, 172 (1968)
[22] 10.1090/proc/13037 · Zbl 1346.55010 · doi:10.1090/proc/13037
[23] ; Quillen, Algebraic K-theory, I : Higher K-theories. Lecture Notes in Math., 341, 85 (1973) · Zbl 0292.18004
[24] 10.1112/plms/s3-40.2.193 · Zbl 0471.57011 · doi:10.1112/plms/s3-40.2.193
[25] ; Ranicki, Exact sequences in the algebraic theory of surgery. Mathematical Notes, 26 (1981) · Zbl 0471.57012
[26] ; Ranicki, Algebraic L-theory and topological manifolds. Cambridge Tracts in Mathematics, 102 (1992) · Zbl 0767.57002
[27] ; Ranicki, Surveys on surgery theory. Ann. of Math. Stud., 149, 81 (2001) · Zbl 0974.57001
[28] 10.2140/agt.2013.13.625 · Zbl 1277.55004 · doi:10.2140/agt.2013.13.625
[29] 10.1017/is009010017jkt075 · Zbl 1328.19009 · doi:10.1017/is009010017jkt075
[30] 10.1016/j.jpaa.2016.12.026 · Zbl 1360.19008 · doi:10.1016/j.jpaa.2016.12.026
[31] 10.2140/gt.2004.8.645 · Zbl 1052.19001 · doi:10.2140/gt.2004.8.645
[32] 10.1007/BF01390197 · Zbl 0267.55020 · doi:10.1007/BF01390197
[33] 10.1016/0040-9383(74)90022-6 · Zbl 0284.55016 · doi:10.1016/0040-9383(74)90022-6
[34] 10.32917/hmj/1206134749 · doi:10.32917/hmj/1206134749
[35] 10.2977/prims/1195173610 · Zbl 0677.55013 · doi:10.2977/prims/1195173610
[36] ; Shimakawa, Osaka J. Math., 28, 223 (1991) · Zbl 0759.55009
[37] 10.1023/A:1007892801533 · Zbl 0938.55017 · doi:10.1023/A:1007892801533
[38] 10.1080/00927879308824627 · Zbl 0797.19001 · doi:10.1080/00927879308824627
[39] 10.1515/9781400846528 · Zbl 1309.57001 · doi:10.1515/9781400846528
[40] 10.1090/memo/1084 · Zbl 1401.57044 · doi:10.1090/memo/1084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.