×

Weak topology and Opial property in Wasserstein spaces, with applications to gradient flows and proximal point algorithms of geodesically convex functionals. (English) Zbl 1484.60002

Summary: In this paper we discuss how to define an appropriate notion of weak topology in the Wasserstein space \((\mathcal{P}_2(\mathsf{H}),W_2)\) of Borel probability measures with finite quadratic moment on a separable Hilbert space \(\mathsf{H} \).
We will show that such a topology inherits many features of the usual weak topology in Hilbert spaces, in particular the weak closedness of geodesically convex closed sets and the Opial property characterising weakly convergent sequences.
We apply this notion to the approximation of fixed points for a non-expansive map in a weakly closed subset of \(\mathcal{P}_2(\mathsf{H})\) and of minimizers of a lower semicontinuous and geodesically convex functional \(\phi:\mathcal{P}_2(\mathsf{H})\to(-\infty,+\infty]\) attaining its minimum. In particular, we will show that every solution to the Wasserstein gradient flow of \(\phi\) weakly converge to a minimizer of \(\phi\) as the time goes to \(+\infty \). Similarly, if \(\phi\) is also convex along generalized geodesics, every sequence generated by the proximal point algorithm converges to a minimizer of \(\phi\) with respect to the weak topology of \(\mathcal{P}_2(\mathsf{H})\).

MSC:

60B05 Probability measures on topological spaces
49Q22 Optimal transportation
49J45 Methods involving semicontinuity and convergence; relaxation
65K10 Numerical optimization and variational techniques

References:

[1] L. Ambrosio -N. Gigli -G. Savaré , Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zü rich. Birkhäuser, Basel, 2nd ed., 2008. · Zbl 1145.35001
[2] C. Baiocchi, Discretization of evolution variational inequalities. In: Partial di¤erential equations and the calculus of variations, Vol. I, Prog. Nonlinear Di¤er. Equ. Appl. 1, pages 59-92. Birkhäuser, Boston, MA, 1989. · Zbl 0677.65068
[3] R. E. Bruck, Jr, Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Functional Analysis, 18:15-26, 1975. · Zbl 0319.47041
[4] C. Dellacherie -P. Meyer, Probabilities and Potential. North-Holland Math. Stud. 29. North-Holland Publishing Co., 1978. · Zbl 0494.60001
[5] R. Jordan -D. Kinderlehrer -F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 29(1):1-17, 1998. · Zbl 0915.35120
[6] B. Martinet, Régularisation d’inéquations variationnelles par approximations suc-cessives. Rev. Française Informat. Recherche Opérationnelle, 4(Sér. R-3):154-158, 1970. · Zbl 0215.21103
[7] B. Martinet, Détermination approchée d’un point fixe d’une application pseudo-contractante. Cas de l’application prox. C. R. Acad. Sci. Paris Sér. A-B, 274:A163-A165, 1972. · Zbl 0226.47032
[8] R. J. McCann, A convexity principle for interacting gases. Adv. Math., 128(1):153-179, 1997. · Zbl 0901.49012
[9] M. Muratori -G. Savaré , Gradient flows and evolution variational inequalities in metric spaces. I: Structural properties. J. Funct. Anal., 278(4):108347, 67, 2020. · Zbl 1448.49015
[10] Z. Opial, Weak convergence of the sequence of successive approximations for non-expansive mappings. Bull. Amer. Math. Soc., 73:591-597, 1967. · Zbl 0179.19902
[11] S. Prus, Banach spaces with the uniform Opial property. Nonlinear Anal., 18(8):697-704, 1992. · Zbl 0786.46023
[12] R. T. Rockafellar, Monotone operators and the proximal point algorithm. SIAM J. Control Optim., 14(5):877-898, 1976. · Zbl 0358.90053
[13] F. Santambrogio, Optimal transport for applied mathematicians: Calculus of varia-tions, PDEs and modeling. Prog. Nonlinear Di¤er. Equ. Appl. 87. Birkhäuser, Cham, 2015. · Zbl 1401.49002
[14] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical mea-sures. Tata Inst. Fundam. Res., Stud. Math. 6. Oxford University Press, London, 1973. · Zbl 0298.28001
[15] C. Villani, Optimal transport: Old and New. Grundlehren Math. Wiss. 338. Springer, Berlin, 2009. · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.