×

Szegő recurrence for multiple orthogonal polynomials on the unit circle. (English) Zbl 1541.42027

Summary: We investigate polynomials that satisfy simultaneous orthogonality conditions with respect to several measures on the unit circle. We generalize the direct and inverse Szegő recurrence relations, identify the analogues of the Verblunsky coefficients, and prove the Christoffel-Darboux formula. These results should be viewed as the direct analogue of the nearest neighbour recurrence relations from the theory of multiple orthogonal polynomials on the real line.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
41A21 Padé approximation
47B36 Jacobi (tridiagonal) operators (matrices) and generalizations
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)

References:

[1] \'{A}lvarez-Fern\'{a}ndez, C., Multiple orthogonal polynomials of mixed type: {G}auss-{B}orel factorization and the multi-component 2{D} {T}oda hierarchy, Advances in Mathematics. Adv. Math., 1451-1525, 2011 · Zbl 1272.37033
[2] Aptekarev, A. I., Multiple orthogonal polynomials, J. Comput. Appl. Math.. Proceedings of the VIIIth Symposium on Orthogonal Polynomials and Their Applications (Seville, 1997), 423-447, 1998 · Zbl 0958.42015 · doi:10.1016/S0377-0427(98)00175-7
[3] Aptekarev, Alexander I., Self-adjoint Jacobi matrices on trees and multiple orthogonal polynomials, Trans. Amer. Math. Soc., 875-917, 2020 · Zbl 1433.42027 · doi:10.1090/tran/7959
[4] Aptekarev, Alexander I., Jacobi matrices on trees generated by Angelesco systems: asymptotics of coefficients and essential spectrum, J. Spectr. Theory, 1511-1597, 2021 · Zbl 1501.47050 · doi:10.4171/jst/380
[5] Aptekarev, Alexander I., Differential equations for the recurrence coefficients limits for multiple orthogonal polynomials from a Nevai class, J. Approx. Theory, 105409, 21 pp., 2020 · Zbl 1440.42115 · doi:10.1016/j.jat.2020.105409
[6] Borodin, Alexei, Biorthogonal ensembles, Nuclear Phys. B, 704-732, 1999 · Zbl 0948.82018 · doi:10.1016/S0550-3213(98)00642-7
[7] Cruz-Barroso, Ruym\'{a}n, Multiple orthogonal polynomials on the unit circle. Normality and recurrence relations, J. Comput. Appl. Math., 115-132, 2015 · Zbl 1312.33038 · doi:10.1016/j.cam.2014.11.004
[8] Daems, E., A {C}hristoffel-{D}arboux formula for multiple orthogonal polynomials, Journal of Approximation Theory. J. Approx. Theory, 190-202, 2004 · Zbl 1063.42014
[9] Daems, E., Multiple orthogonal polynomials of mixed type and non-intersecting {B}rownian motions, Journal of Approximation Theory. J. Approx. Theory, 91-114, 2007 · Zbl 1135.42324
[10] Denisov, Sergey A., Spectral theory of Jacobi matrices on trees whose coefficients are generated by multiple orthogonality, Adv. Math., Paper No. 108114, 79 pp., 2022 · Zbl 07466427 · doi:10.1016/j.aim.2021.108114
[11] Duits, M., On global fluctuations for non-colliding processes, The Annals of Probability. Ann. Probab., 1279-1350, 2018 · Zbl 1429.60072
[12] Duits, Maurice, Global fluctuations for multiple orthogonal polynomial ensembles, J. Funct. Anal., Paper No. 109062, 49 pp., 2021 · Zbl 1493.60082 · doi:10.1016/j.jfa.2021.109062
[13] Ismail, Mourad E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, xviii+706 pp., 2005, Cambridge University Press, Cambridge · Zbl 1082.42016 · doi:10.1017/CBO9781107325982
[14] Kuijlaars, A. B.J., Multiple orthogonal polynomial ensembles, Recent trends in orthogonal polynomials and approximation theory, Contemp. Math., Amer. Math. Soc., Providence, RI, 155-176, 2010 · Zbl 1218.60005
[15] Kuijlaars, A. B. J., Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights, Comm. Math. Phys., 217-275, 2009 · Zbl 1188.60018 · doi:10.1007/s00220-008-0652-9
[16] Mart\'{\i }nez-Finkelshtein, Andrei, What is…a multiple orthogonal polynomial?, Notices Amer. Math. Soc., 1029-1031, 2016 · Zbl 1352.33002 · doi:10.1090/noti1430
[17] Mart\'{\i }nez-Finkelshtein, A., Spectral curves, variational problems and the {H}ermitian matrix model with external source, Communications in Mathematical Physics. Comm. Math. Phys., 2163-2242, 2021 · Zbl 07340022
[18] M\'{\i }nguez Ceniceros, Judit, Multiple orthogonal polynomials on the unit circle, Constr. Approx., 173-197, 2008 · Zbl 1172.41004 · doi:10.1007/s00365-007-0680-2
[19] Ndayiragije, F., Asymptotics for the ratio and the zeros of multiple {C}harlier polynomials, Journal of Approximation Theory. J. Approx. Theory, 823-840, 2012 · Zbl 1246.42022
[20] Neuschel, T., Asymptotic zero distribution of {J}acobi-{P}i\~{n}eiro and multiple {L}aguerre polynomials, Journal of Approximation Theory. J. Approx. Theory, 114-132, 2016 · Zbl 1342.33024
[21] Nikishin, E. M., Rational approximations and orthogonality, Translations of Mathematical Monographs, viii+221 pp., 1991, American Mathematical Society, Providence, RI · Zbl 0733.41001
[22] Simon, Barry, Orthogonal polynomials on the unit circle. Part 1, American Mathematical Society Colloquium Publications, xxvi+466 pp., 2005, American Mathematical Society, Providence, RI · Zbl 1082.42020 · doi:10.1090/coll054.1
[23] \'{S}widerski, Grzegorz, Christoffel functions for multiple orthogonal polynomials, J. Approx. Theory, Paper No. 105820, 22 pp., 2022 · Zbl 1521.33006 · doi:10.1016/j.jat.2022.105820
[24] Van Assche, Walter, Nearest neighbor recurrence relations for multiple orthogonal polynomials, J. Approx. Theory, 1427-1448, 2011 · Zbl 1231.33014 · doi:10.1016/j.jat.2011.05.003
[25] Van Assche, W., Ratio asymptotics for multiple orthogonal polynomials, Modern trends in constructive function theory, Contemp. Math., Amer. Math. Soc., Providence, RI, 73-85, 2016 · Zbl 1355.42029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.