×

An inverse source problem for pseudo-parabolic equation with Caputo derivative. (English) Zbl 1490.35542


MSC:

35R30 Inverse problems for PDEs
35K70 Ultraparabolic equations, pseudoparabolic equations, etc.
35R11 Fractional partial differential equations
47J06 Nonlinear ill-posed problems
47H10 Fixed-point theorems
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] Beshtokov, MK, Boundary value problems for a pseudoparabolic equation with the Caputo fractional derivative, Differ. Equ., 55, 7, 884-893 (2019) · Zbl 1426.35221 · doi:10.1134/s0012266119070024
[2] Herrmann, R., Common aspects of deformed Lie algebras and fractional calculus, Phys. A: Stat. Mech. Appl., 389, 21, 4613-4622 (2010) · doi:10.1016/j.physa.2010.07.004
[3] Hilfer, R., Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B (2000) · Zbl 0994.34050 · doi:10.1021/jp9936289
[4] Kirsch, A., An Introduction to the Mathematical Theory of Inverse Problem. Applied Mathematical Sciences (2019), New York: Springer, New York · Zbl 1213.35004 · doi:10.1007/978-1-4419-8474-6
[5] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier Science B.V, Amsterdam · Zbl 1092.45003
[6] Kilbas, AA; Saigo, M.; Saxena, RK, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., 15, 1, 31-49 (2004) · Zbl 1047.33011 · doi:10.1080/10652460310001600717
[7] Kiryakova, V., Generalized Fractional Calculus and Applications, Pitman Research Notes in Mathematics 301 (1994), Harlow: Longman, Harlow · Zbl 0882.26003
[8] Marras, M.; Vernier-Piro, S.; Viglialoro, G., Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term, Discrete Contin. Dyn. Syst. B, 22, 6, 2291-2300 (2017) · Zbl 1366.35101 · doi:10.3934/dcdsb.2017096
[9] Musalhi, FSA; Nasser, SAS; Erkinjon, K., Initial and boundary value problems for fractional differential equations involving Atangana-Baleanu derivative, SQU J. Sci., 23, 2, 137-146 (2018) · doi:10.24200/squjs.vol23iss2pp137-146
[10] Odzijewicz, T., Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations in terms of a generalized fractional integral with applications to physics. Abstr. Appl. Anal. 2012, Special Issue, Article ID 871912 (2012). doi:10.1155/2012/871912 · Zbl 1242.49019
[11] Podlubny, I., Fractional Diffusion Equation, Mathematics in Science and Engineering (1999), New York: Academic Press, New York · Zbl 1056.93542
[12] Rundell, W., Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, Appl. Anal., 10, 231-242 (1980) · Zbl 0454.35045 · doi:10.1080/00036818008839304
[13] Ruzhansky, M.; Tokmagambetov, N., Nonharmonic analysis of boundary value problems, Int. Math. Res. Not., 12, 3548-3615 (2016) · Zbl 1408.35240 · doi:10.1093/imrn/rnv243
[14] Ruzhansky, M.; Tokmagambetov, N., Nonharmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12, 1, 115-140 (2017) · Zbl 1385.58013 · doi:10.1051/mmnp/201712107
[15] Ruzhansky, M.; Tokmagambetov, N.; Torebek, BT, On a non-local problem for a multi-term fractional diffusion-wave equation, Fract. Calc. Appl. Anal., 23, 2, 324-355 (2020) · Zbl 1446.35253 · doi:10.1515/fca-2020-0016
[16] Ruzhansky, M.; Tokmagambetov, N.; Torebek, B., Inverse source problems for positive operators. I. Hypoelliptic diffusion and subdiffusion equations, J. Inverse Ill-Posed Probl., 27, 6, 891-911 (2019) · Zbl 1430.35272 · doi:10.1515/jiip-2019-0031
[17] Sun, HG; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, YQ, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64, 213-231 (2018) · Zbl 1509.26005 · doi:10.1016/j.cnsns.2018.04.019
[18] Tatar, S.; Tinaztepe, R.; Ulusoy, S., Determination of an unknown source term in a space-time fractional diffusion equation, J. Fract. Calc. Appl., 6, 1, 83-90 (2015) · Zbl 1488.35629
[19] Tuan, NH; Zhou, Y.; Can, NH, Identifying inverse source for fractional diffusion equation with Riemann-Liouville derivative, Comput. Appl. Math., 39, 2, 1-16 (2020) · Zbl 1449.35450 · doi:10.1007/s40314-020-1103-2
[20] Tuan, NH; Huynh, LN; Baleanu, D.; Can, NH, On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator, Math. Methods Appl. Sci., 43, 6, 2858-2882 (2019) · Zbl 1447.35390 · doi:10.1002/mma.6087
[21] Tuan, NH; Baleanu, D.; Thach, TN; O’Regan, D.; Can, NH, Final value problem for nonlinear time fractional reaction-diffusion equation with discrete data, J. Comput. Appl. Math. (2020) · Zbl 1436.35327 · doi:10.1016/j.cam.2020.112883
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.