×

Iterative optimal solutions of linear matrix equations for hyperspectral and multispectral image fusing. (English) Zbl 1518.65042

Summary: For a linear matrix function \(f\) in \(X \in {\mathbb{R}}^{m\times n}\) we consider inhomogeneous linear matrix equations \(f(X) = E\) for \(E \neq 0\) that have or do not have solutions. For such systems we compute optimal norm constrained solutions iteratively using the Conjugate Gradient and Lanczos’ methods in combination with the More-Sorensen optimizer. We build codes for ten linear matrix equations, of Sylvester, Lyapunov, Stein and structured types and their T-versions, that differ only in two five times repeated equation specific code lines. Numerical experiments with linear matrix equations are performed that illustrate universality and efficiency of our method for dense and small data matrices, as well as for sparse and certain structured input matrices. Specifically we show how to adapt our universal method for sparse inputs and for structured data such as encountered when fusing image data sets via a Sylvester equation algorithm to obtain an image of higher resolution.

MSC:

65F45 Numerical methods for matrix equations
68U10 Computing methodologies for image processing

Software:

HSL-VF05; GQTPAR

References:

[1] Aiazzi, B.; Alparone, L.; Baronti, S.; Garzelli, A.; Selva, M., MIF-tailored multiscale fusion of high-resolution MS and Pan imagery, Photogrammetric Engineering and Remote Sensing, 72, 5, 591-596 (2006) · doi:10.14358/PERS.72.5.591
[2] Aiazzi, B.; Baronti, S.; Selva, M., Improving component substitution pansharpening through multivariate regression of MS+Pan data, IEEE Transactions on Geoscience and Remote Sensing, 45, 10, 3230-3239 (2007) · doi:10.1109/TGRS.2007.901007
[3] Barraud, A., An algorithm for solving the matrix equation \(X=FXF + S\), International Journal of Control, 27, 2, 319-320 (1978) · Zbl 0379.65018 · doi:10.1080/00207177808922369
[4] Bartels, RH; Stewart, GW, Solution of the matrix equation \(AX + XB = C\), Communications of the ACM, 15, 9, 820-826 (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[5] Benner, P.; Breiten, T., Low rank methods for a class of generalized Lyapunov equations and related issues, Numer. Math., 124, 441-470 (2013) · Zbl 1266.65068 · doi:10.1007/s00211-013-0521-0
[6] Berisha, S.; Nagy, JG; Plemmons, RJ, Deblurring and sparse unmixing for hyperspectral images using multiple point spread functions, SIAM Journal on Scientific Computing, 37, 5, 389-406 (2015) · Zbl 1325.94029 · doi:10.1137/140980478
[7] Braman, K., Byers, R., Mathias, R.: The multishift QR algorithm. Part I: Maintaining well-focused shifts and level 3 performance, SIAM J Matrix Anal Appl, 23, 929-947 (2002) · Zbl 1017.65031
[8] Braman, K.; Byers, R.; Mathias, R., The multishift QR algorithm, Part I: Aggressive early deflation, SIAM J Matrix Anal Appl, 23, 948-973 (2002) · Zbl 1017.65032
[9] Chen, C.; Schonfeld, D., Pose estimation from multiple cameras based on Sylvester’s equation, Computer Vision and Image Understanding, 114, 652-666 (2010) · doi:10.1016/j.cviu.2010.01.002
[10] Dopico, F.: The matrix Sylvester equation for congruence, 61p., available at http://gauss.uc3m.es/web/personal_web/fdopico/talks/2013-edinburgh.pdf · Zbl 1256.65035
[11] Ding, F.; Chen, T., Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Autom. Control., 50, 1216-1221 (2005) · Zbl 1365.65083 · doi:10.1109/TAC.2005.852558
[12] Ding, F.; Chen, T., Iterative least-squares solutions of coupled Sylvester matrix equations, Syst. Control. Lett., 54, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[13] Ding, F.; Chen, T., On iterative solutions of general coupled matrix equations, SIAM J. Control. Optim., 44, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[14] Ding, F.; Liu, PX; Ding, J., Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Appl. Math. Comput., 197, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[15] Dopico, F.; González, J., Daniel Kressner, Valeria Simoncini, Projection methods for large-scale T-Sylvester equations, Mathematics of Computation, 85, 2427-2455 (2016) · Zbl 1352.65127 · doi:10.1090/mcom/3081
[16] Dopico, F.: Private communication, Madrid, (2016)
[17] Ding, F.; Zhang, H., Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems, Iet Control Theory and Applications, 8, 1588-1595 (2014) · doi:10.1049/iet-cta.2013.1044
[18] Eismann, M.T.: Resolution enhancement of hyperspectral imagery using maximum a posteriori estimation with a stochastic mixing model, Ph.D. dissertation, Dept. Electrical and Computer Engineering, Univ. Dayton, OH, (May 2004)
[19] Gould, NIM; Lucidi, S.; Roma, M.; Toint, PL, Solving the trust-region subproblem using the Lanczos method, SIAM Journal on Optimization, 9, 2, 504-525 (1999) · Zbl 1047.90510 · doi:10.1137/S1052623497322735
[20] Golub, GH; Wilkinson, JH, Ill-conditioned eigensystems and the computation of the Jordan canonical form, SIAM Rev., 18, 578-619 (1976) · Zbl 0341.65027 · doi:10.1137/1018113
[21] Green, RO, Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sensing of Environment, 65, 3, 227-248 (1998) · doi:10.1016/S0034-4257(98)00064-9
[22] Hansen, PC; Jacobsen, M.; Rasmussen, JM; Sorensen, H.; Hansen, PC; Jacobsen, BH; Mosegaard, K., The PP-TSVD algorithm for image restoration problems, methods and applications of inversion, 171-186 (2000), Berlin: Springer-Verlag, Berlin · doi:10.1007/BFb0010291
[23] Hestenes, M.; Stiefel, E., Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand., 49, 6, 409-436 (1952) · Zbl 0048.09901 · doi:10.6028/jres.049.044
[24] Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press (1991) · Zbl 0729.15001
[25] Hodel, AS; Misra, P., Least-squares approximate solution of overdetermined Sylvester equations, SIAM Journal on Matrix Analysis and Application, 18, 2, 279-290 (1997) · Zbl 0871.65029 · doi:10.1137/S0895479893252337
[26] Jonsson, I.; Kågström, B., Recursive blocked algorithms for solving triangular system - Part I: one-sided and coupled Sylvester-type matrix equations, ACM Transactions on Mathematical Software (TOMS), 28, 4, 392-415 (2002) · Zbl 1072.65061 · doi:10.1145/592843.592845
[27] Jonsson, I.; Kågström, B., Recursive blocked algorithms for solving triangular system - Part II: two-sided and generalized Sylvester and Lyapunov matrix equations, ACM Transactions on Mathematical Software (TOMS), 28, 4, 416-435 (2002) · Zbl 1072.65062 · doi:10.1145/592843.592846
[28] Kitagawa, G., An algorithm for solving the matrix equation \(X = F X F^{\prime } + S\), International Journal of Control, 25, 5, 745-753 (1977) · Zbl 0364.65025 · doi:10.1080/00207177708922266
[29] Kressner, D.; Plešinger, M., Tobler, Christine: A preconditioned low-rank CG method for parameter-dependent Lyapunov matrix equations, Numer. Linear Algebra Appl., 21, 666-684 (2014) · Zbl 1340.65077 · doi:10.1002/nla.1919
[30] Liu, G., Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details, International Journal of Remote Sensing, 21, 18, 3461-3472 (2000) · doi:10.1080/014311600750037499
[31] Loncan, L., Hyperspectral Pansharpening: A Review, IEEE Geoscience and Remote Sensing Magazine, 3, 3, 27-46 (2015) · doi:10.1109/MGRS.2015.2440094
[32] Lin, C-H; Ma, F.; Chi, C-Y; Hsieh, C-H, A convex optimization-based coupled nonnegative matrix factorization algorithm for Hyperspectral and Multispectral data fusion, IEEE Transactions on Geoscience and Remote Sensing, 56, 3, 1652-1667 (2018) · doi:10.1109/TGRS.2017.2766080
[33] Mitra, SK, The matrix equation \(AXB+CXD=E\), SIAM Journal on Applied Mathematics, 32, 4, 823-825 (1977) · Zbl 0392.15005 · doi:10.1137/0132070
[34] More, JJ; Sorensen, DC, Computing a trust region step, SIAM Journal on Scientific and Statistical Computing, 4, 3, 553-572 (1983) · Zbl 0551.65042 · doi:10.1137/0904038
[35] Rojas, M.; Sorensen, DC, A trust-region approach to the regularization of large-scale discrete forms of ill-posed problems, SIAM Journal on Scientific Computing, 23, 6, 1842-1860 (2002) · Zbl 1006.86004 · doi:10.1137/S1064827500378167
[36] Simoncini, V., A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29, 3, 1268-1288 (2007) · Zbl 1146.65038 · doi:10.1137/06066120X
[37] Simoncini, V., Computational methods for linear matrix equations, SIAM Review, 58, 3, 377-441 (2016) · Zbl 1386.65124 · doi:10.1137/130912839
[38] Steihaug, T., The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis, 20, 3, 626-637 (1983) · Zbl 0518.65042 · doi:10.1137/0720042
[39] Simoes, M.; Bioucas-Dias, J.; Almeida, LB; Chanussot, J., A convex formulation for Hyperspectral image superresolution via subspace-based regularization, IEEE Transactions on Geoscience and Remote Sensing, 53, 6, 3373-3388 (2015) · doi:10.1109/TGRS.2014.2375320
[40] Song, C.; Chen, G.; Zhao, L., Iterative solutions to coupled Sylvester-transpose matrix equations, Applied Mathematical Modelling, 35, 4675-4683 (2011) · Zbl 1228.65071 · doi:10.1016/j.apm.2011.03.038
[41] Toint, L.: Towards an efficient sparsity exploiting Newton method for minimization, In Proceedings of the Conference on Sparse Matrices and Their Uses, Academic Press, London and New York, (1981) · Zbl 0463.65045
[42] Uhlig, F., Xu, A.-B.: MATLAB m-files for solving all eleven Sylvester type linear matrix equations are available at http://www.auburn.edu/ uhligfd/m_files/Sylvester/ , (2017)
[43] Wei, Q.; Bioucas-Dias, J.; Dobigeon, N.; Tourneret, J-Y, Hyperspectral and multispectral image fusion based on a sparse representation, IEEE Transactions on Geoscience and Remote Sensing, 53, 7, 3658-3668 (2015) · doi:10.1109/TGRS.2014.2381272
[44] Wei, Q.; Dobigeon, N.; Tourneret, J-Y, Fast fusion of multi-band images based on solving a Sylvester Equation, IEEE Transactions on Image Processing, 24, 4109-4121 (2015) · Zbl 1408.94706 · doi:10.1109/TIP.2015.2458572
[45] Wei, Q.; Dobigeon, N.; Tourneret, J-Y; Bioucas-Dias, J., R-RUSE: Robust fast Fusion of multi-band image based on solving a Sylvester equation, IEEE Signal Processing Letters, 23, 11, 1632-1636 (2016) · doi:10.1109/LSP.2016.2608858
[46] Xie, L.; Ding, J.; Ding, F., Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl., 58, 1441-1448 (2009) · Zbl 1189.65083
[47] Xie, Y-J; Ma, C-F, The matrix iterative methods for solving a class of generalized coupled Sylvester-conjugate linear matrix equations, Applied Mathematics Modelling, 39, 4895-4908 (2015) · Zbl 1443.65057 · doi:10.1016/j.apm.2015.04.011
[48] Xie, D.; Xu, A-B; Peng, Z-Y, Least-squares symmetric solution to the matrix equation \(AXB=C\) with the norm inequality constraint, International Journal of Computer Mathematics, 95, 9, 1564-1578 (2016) · Zbl 1360.65131 · doi:10.1080/00207160.2015.1067310
[49] Xu, A.-B., Peng, Z.-y.: Norm-constrained least-squares solutions to the matrix equation \(AXB = C\), Abstract and Applied Analysis, Vol 2013 (2013), 10 p., doi:10.1155/2013/781276 · Zbl 1470.65091
[50] Yokoya, N.; Grohnfeldt, C.; Chanussot, J., Hyperspectral and Multispectral Data Fusion: A comparative review of the recent literature, IEEE Geoscience and Remote Sensing Magazine, 5, 2, 29-56 (2017) · doi:10.1109/MGRS.2016.2637824
[51] Yokoya, N., Iwasaki, A.: Airborne hyperspectral data over Chikusei, Space Application Laboratory, Univ. Tokyo, Japan, Tech. Rep. SAL-2016-05-27, (May 2016)
[52] Yokoya, N., Mayumi, N., Iwasaki, A.: Cross-calibration for data fusion of EO-1/hyperion and terra/ASTER, IEEE J. Sel. Topics Appl. Earth Oberv. Remote Sens., 6:2(2013), p. 419-426
[53] Yokoya, N.; Yairi, T.; Iwasaki, A., Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion, IEEE Transactions on Geoscience and Remote Sensing, 50, 2, 528-537 (2012) · doi:10.1109/TGRS.2011.2161320
[54] Zhang, H., Reduced-rank gradient-based algorithms for generalized coupled Sylvester matrix equations and its applications, Comput. Math. Appl., 70, 2049-2062 (2015) · Zbl 1443.65059
[55] Zhang, H., Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comput. Math. Appl., 77, 1233-1244 (2019) · Zbl 1442.65071
[56] Zhang, H.; Wan, L-P, Zeroing neural network methods for solving the Yang-Baxter-like matrix equation, Neurocomputing, 383, 409-418 (2020) · doi:10.1016/j.neucom.2019.11.101
[57] Zhang, H.; Yin, H., Refinements of the Hadamard and Cauchy-Schwarz inequalities with two inequalities of the principal angles, J. Math. Inequal., 2, 423-435 (2019) · Zbl 1431.51011 · doi:10.7153/jmi-2019-13-28
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.