×

Periodic orbits of discrete and continuous dynamical systems via Poincaré-Miranda theorem. (English) Zbl 1432.37045

The main purpose of this paper is to present a systematic methodology to determine and locate analytically isolated periodic points of discrete and continuous dynamical systems with algebraic nature. This method is applied to a wide range of examples, including a one-parameter family of counterexamples to the discrete Markus-Yamabe conjecture (La Salle conjecture). The authors consider: the study of the low periods of a Lotka-Volterra-type map; the existence of three limit cycles for a piecewise linear planar vector field; a new counterexample to Kouchnirenko’s conjecture; an alternative proof of the existence of a class of symmetric central configuration of the \((1 + 4)\)-body problem.
More precisely, they start giving a new degree-6 counterexample to Kouchnirenko’s conjecture to illustrate the validity and performance of their approach. In Section 3, they prove the existence of a 1-parameter family of rational counterexamples to a conjecture of La Salle (also known as discrete Markus-Yamabe conjecture) that extends the results of A. Cima et al. [Publ. Mat., Barc. 2014, 167–178 (2014; Zbl 1308.39015)], providing also an alternative proof.
In Section 4 they show the existence of exactly two 5-periodic orbits and three 6-periodic orbits in a certain region for a Lotka-Volterra-type map, correcting and complementing some results that appear in the literature.
In Section 5 another example of planar piecewise linear differential system with two zones having 3-limit cycles is provided.
Finally, in Section 6 the Poincaré-Miranda theorem is used to give an alternative proof of the existence of a type of symmetric central configuration of the \((1 + 4)\)-body problem.

MSC:

37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
39A23 Periodic solutions of difference equations
13P15 Solving polynomial systems; resultants
34D23 Global stability of solutions to ordinary differential equations
70F15 Celestial mechanics
37C05 Dynamical systems involving smooth mappings and diffeomorphisms

Citations:

Zbl 1308.39015

References:

[1] Y. Avishai; D. Berend, Transmission through a Thue-Morse chain, Phys. Rev. B., 45, 2717-2724 (1992) · doi:10.1103/PhysRevB.45.2717
[2] F. Balibrea; J. L. García Guirao; M. Lampart; J. Llibre, Dynamics of a Lotka-Volterra map, Fundamenta Mathematicae, 191, 265-279 (2006) · Zbl 1107.37032 · doi:10.4064/fm191-3-5
[3] J. Bernat; J. Llibre, Counterexample to Kalman and Markus-Yamabe conjectures in dimension larger than 3, Dynam. Contin. Discrete Impuls. Systems, 2, 337-379 (1996) · Zbl 0889.34047
[4] J. Casasayas; J. Llibre; A. Nunes, Central configurations of the planar \(1+n\)-body problem, Celestial Mech. Dynam. Astronom., 60, 273-288 (1994) · Zbl 0821.70007 · doi:10.1007/BF00693325
[5] A. Cima; A. Gasull; F. Mañosas, The discrete Markus-Yamabe problem, Nonlinear Anal. TMA, 35, 343-354 (1999) · Zbl 0919.34042 · doi:10.1016/S0362-546X(97)00715-3
[6] A. Cima; A. Gasull; F. Mañosas, On the global asymptotic stability of difference equations satisfying a Markus-Yamabe condition, Publ. Mat., 58, 167-178 (2014) · Zbl 1308.39015 · doi:10.5565/PUBLMAT_Extra14_09
[7] A. Cima; A. van den Essen; A. Gasull; E. Hubbers; F. Mañosas, A polynomial counterexample to the Markus-Yamabe conjecture, Adv. Math., 131, 453-457 (1997) · Zbl 0896.34042 · doi:10.1006/aima.1997.1673
[8] J. M. Cors; J. Llibre; M. Ollé, Central configurations of the planar coorbital satellite problem, Celestial Mech. Dynam. Astronom., 89, 319-342 (2004) · Zbl 1145.70318 · doi:10.1023/B:CELE.0000043569.25307.ab
[9] A. Dickenstein; J. M. Rojas; K. Rusek; J. Shih, Extremal Real Algebraic Geometry and \(\begin{document} \mathcal{A} \end{document} \)-Discriminants, Moscow Math. Journal, 7, 425-452,574 (2007) · Zbl 1137.14044 · doi:10.17323/1609-4514-2007-7-3-425-452
[10] G. H. Erjaee; F. M. Dannan, Stability analysis of periodic solutions to the nonstandard discretized model of the Lotka-Volterra predator-prey system, Int. J. Bifurcation and Chaos, 14, 4301-4308 (2004) · Zbl 1089.34528 · doi:10.1142/S0218127404011946
[11] E. Freire; E. Ponce; F. Torres, The discontinuous matching of two planar linear foci can have three nested crossing limit cycles, Publ. Mat., 58, 221-253 (2014) · Zbl 1343.34077 · doi:10.5565/PUBLMAT_Extra14_13
[12] J. García-Saldaña; A. Gasull; H. Giacomini, Bifurcation diagram and stability for a one-parameter family of planar vector fields, J. Math. Anal. Appl., 413, 321-342 (2014) · Zbl 1308.34048 · doi:10.1016/j.jmaa.2013.11.047
[13] J. D. García-Saldaña; A. Gasull; H. Giacomini, Bifurcation values for a familiy of planar vector fields of degree five, Discrete Contin. Dyn. Syst. A, 35, 669-701 (2015) · Zbl 1319.34066 · doi:10.3934/dcds.2015.35.669
[14] A. Gasull; M. Llorens; V. Mañosa, Periodic points of a Landen transformation, Commun. Nonlinear Sci. Numer. Simulat., 64, 232-245 (2018) · Zbl 1524.37025 · doi:10.1016/j.cnsns.2018.04.020
[15] A. Granas and J. Dugundji, Fixed Point Theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. · Zbl 1025.47002
[16] C. Gutiérrez, A solution to the bidimensional global asymptotic stability conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12, 627-671 (1995) · Zbl 0837.34057 · doi:10.1016/S0294-1449(16)30147-0
[17] B. Haas, A simple counterexample to Kouchnirenko’s conjecture, Beiträge zur Algebra und Geometrie, 43, 1-8 (2002) · Zbl 1012.12001
[18] S.-M. Huan; X.-S. Yang, On the number of limit cycles in general planar piecewise linear systems, Discrete Contin. Dyn. Syst. A, 32, 2147-2164 (2012) · Zbl 1248.34033 · doi:10.3934/dcds.2012.32.2147
[19] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, Inc., New York, 1994. · Zbl 0168.13101
[20] A. G. Khovanskiǐ, On a class of systems of transcendental equations, Doklady Akad. Nauk. SSSR, 255, 804-807 (1980)
[21] W. Kulpa, The Poincaré-Miranda theorem, Amer. Math. Month., 104, 545-550 (1997) · Zbl 0891.47040 · doi:10.2307/2975081
[22] J. P. La Salle, The Stability of Dynamical Systems, Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1976. · Zbl 0364.93002
[23] T.-Y. Li; J. M. Rojas; X. S. Wang, Counting real connected components of trinomial curve intersections and \(m\)-nomial hypersurfaces, Discrete Comput. Geom., 30, 379-414 (2003) · Zbl 1059.14071 · doi:10.1007/s00454-003-2834-8
[24] J. Llibre, On the central configurations of the \(n\)-body problem, Appl. Math. Nonlinear Sci., 2, 509-518 (2017) · Zbl 1410.70016 · doi:10.21042/AMNS.2017.2.00042
[25] J. Llibre; E. Ponce, Three nested limit cycles in discontinuous piecewise linear differential systems with two zones, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 19, 325-335 (2012) · Zbl 1268.34061
[26] P. Maličký, Interior periodic points of a Lotka-Volterra map, J. Difference Eq. Appl., 18, 553-567 (2012) · Zbl 1246.37063 · doi:10.1080/10236198.2011.583241
[27] L. Markus; H. Yamabe, Global stability criteria for differential systems, Osaka Math. Journal, 12, 305-317 (1960) · Zbl 0096.28802
[28] C. Miranda, Un’osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital., 3, 5-7 (1940) · JFM 66.0217.01
[29] H. Poincaré, Sur certaines solutions particulieres du probléme des trois corps, Bull. Astronomique, 1, 63-74 (1884) · JFM 15.0833.01
[30] H. Poincaré, Sur les courbes définies par une équation différentielle Ⅳ, J. Math. Pures Appl., 85, 151-217 (1886)
[31] A. N. Sharkovskiǐ, Low dimensional dynamics, Tagungsbericht 20/1993, Proceedings of Mathematisches Forschungsinstitut Oberwolfach, (1993), 17.
[32] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Third edition, Texts in Applied Mathematics, 12. Springer-Verlag, New York, 2002. · Zbl 1004.65001
[33] M. N. Vrahatis, A short proof and a Generalization of Miranda’s existence Theorem, Proc. Amer. Math. Soc., 107, 701-703 (1989) · Zbl 0695.55001 · doi:10.2307/2048168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.