×

Dynamical properties of the negative beta-transformation. (English) Zbl 1266.37017

Given a real number \(\beta>1\), the \(\beta\)-transformation is the selfmap \(T_{\beta}\) of \([0,1)\) defined by \(T_{\beta}(x)=\beta x-\lfloor\beta x\rfloor\), while the negative \(\beta\)-transformation is the selfmap \(T_{-\beta}\) of \((0,1]\) defined by \(T_{-\beta}(x)=-\beta x+\lfloor\beta x\rfloor+1\). The two maps are related by \(T_{-\beta}=1-T_{\beta}\) on \((0,1)\); they are both expanding, piecewise monotonic, and have a unique absolutely continuous invariant measure.
While in the case of the \(\beta\)-transformation the invariant density is never \(0\), in the case of \(T_{-\beta}\) the invariant density may be \(0\) on finitely many subintervals. Writing \(G(\beta)\) for the union of these subintervals – which are explicitly described – the main result of this paper states that \(T_{-\beta}\) is topologically exact on \((0,1]\setminus G(\beta)\). This is the topological analogue of Rohlin’s exactness property: for every nonempty open set \(U\subseteq (0,1]\setminus G(\beta)\) there exists an \(n\) such that \(T_{-\beta}^n(U)=(0,1]\setminus G(\beta)\).
From the above result the authors derive various consequences, extending previous works by Faller, Góra, Ito-Sadahiro, and Masáková-Pelantová. In particular, they prove that \(T_{-\beta}\) is Rohlin exact, that its maximal-entropy measure is unique, and that every \(\beta\) for which the \(T_{-\beta}\)-orbit of \(1\) is eventually periodic is a Perron number.

MSC:

37E05 Dynamical systems involving maps of the interval
37A45 Relations of ergodic theory with number theory and harmonic analysis (MSC2010)
11B83 Special sequences and polynomials

References:

[1] Pollicott, Dynamical Systems and Ergodic Theory (1998) · doi:10.1017/CBO9781139173049
[2] DOI: 10.1007/BF02020331 · Zbl 0079.08901 · doi:10.1007/BF02020331
[3] Lothaire, Cambridge Mathematical Library (1997)
[4] DOI: 10.1007/BF02760884 · Zbl 0422.28015 · doi:10.1007/BF02760884
[5] DOI: 10.1090/S0002-9947-1978-0457679-0 · doi:10.1090/S0002-9947-1978-0457679-0
[6] Góra, Ergod. Th. & Dynam. Sys. 27 pp 1583– (2007) · Zbl 1123.37015 · doi:10.1017/S0143385707000053
[7] DOI: 10.1515/INTEG.2009.023 · Zbl 1191.11005 · doi:10.1515/INTEG.2009.023
[8] Frougny, Proceedings of DLT 09 pp 252– (2009)
[9] DOI: 10.1017/S0143385700009202 · Zbl 0474.28007 · doi:10.1017/S0143385700009202
[10] DOI: 10.1007/BF02761854 · Zbl 0456.28006 · doi:10.1007/BF02761854
[11] DOI: 10.1016/j.disc.2006.08.001 · Zbl 1113.11008 · doi:10.1016/j.disc.2006.08.001
[12] DOI: 10.1016/j.jnt.2005.07.004 · Zbl 1097.11035 · doi:10.1016/j.jnt.2005.07.004
[13] Bertrand, C. R. Acad. Sci. Paris Sér. A 285 pp 419– (1977)
[14] DOI: 10.1016/0012-365X(93)00147-W · Zbl 0839.11007 · doi:10.1016/0012-365X(93)00147-W
[15] DOI: 10.1090/S0002-9947-1978-0466493-1 · doi:10.1090/S0002-9947-1978-0466493-1
[16] DOI: 10.1007/BF00538119 · Zbl 0404.28014 · doi:10.1007/BF00538119
[17] DOI: 10.1112/blms/12.4.269 · Zbl 0494.10040 · doi:10.1112/blms/12.4.269
[18] Rohlin, Izv. Akad. Nauk SSSR Ser. Mat. 25 pp 499– (1961)
[19] DOI: 10.1007/BF02020954 · Zbl 0099.28103 · doi:10.1007/BF02020954
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.