×

The threshold infection level for Wolbachia invasion in random environments. (English) Zbl 1406.34072

Summary: Dengue fever and Zika are mosquito-borne diseases threatening human health. A novel strategy for mosquito-borne disease control uses the bacterium Wolbachia to block virus transmission. It requires releasing Wolbachia infected mosquitoes to exceed a threshold level. Since an accurate forecast for temperature and rainfall, the major environmental conditions regulating the mosquito dynamics, is often not available over a long time period, it is important to explore how the threshold releasing level changes in random environments. In this work, we estimate the threshold level in a stochastic system of differential equations where the reproduction rates of mosquitoes change randomly. We prove that the threshold level is, surprisingly, defined by a deterministic curve that does not fluctuate with environmental conditions. The major difficulty in the proof is to construct various auxiliary curves to limit the dynamic behaviors of the whole family of innumerable solutions satisfying a given initial condition.

MSC:

34C60 Qualitative investigation and simulation of ordinary differential equation models
34D23 Global stability of solutions to ordinary differential equations
92D25 Population dynamics (general)
34F05 Ordinary differential equations and systems with randomness
92D30 Epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI

References:

[1] Axford, J. K.; Ross, P. A.; Yeap, H. L.; Callahan, A. G.; Hoffmann, A. A., Fitness of \(w\) AlbB Wolbachia infection in Aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion, Amer. Soc. Trop. Med. Hyg., 94, 3, 507-516 (2016)
[2] Bian, G.; Xu, Y.; Lu, P.; Xie, Y.; Xi, Z., The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathogens, 6, 4, Article e1000833 pp. (2010)
[3] Calisher, C. H., Persistent emergence of dengue, Emerg. Infec. Dis., 11, 5, 738-739 (2005)
[4] Chen, S. C.; Hsieh, M. H., Modeling the transmission dynamics of dengue fever: implications of temperature effects, Sci. Total Environ., 431, 5, 385-391 (2012)
[5] Cheng, Q.; Jing, Q.; Spear, R. C.; Marshall, J. M.; Yang, Z.; Gong, P., Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: evidence from a mathematical model, PLoS Negl. Trop. Dis., 10, 2, Article e0004417 pp. (2016)
[6] Dang, N. H.; Du, N. H.; Yin, G., Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise, J. Differential Equations, 257, 6, 2078-2101 (2014) · Zbl 1329.60176
[7] Dobson, S. L.; Fox, C. W.; Jiggins, F. M., The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems, Proc. R. Soc. B Biol. Sci., 269, 437-445 (2002)
[8] Du, N. H.; Dang, N. H., Dynamics of Kolmogorov systems of competitive type under the telegraph noise, J. Differential Equations, 250, 1, 386-409 (2011) · Zbl 1215.34064
[9] Dutra, H. L.C.; Rocha, M. N.; Dias, F. B.S.; Mansur, S. B.; Caragata, E. P.; Moreira, L. A., Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes, Cell Host Microbe, 19, 6, 771-774 (2016)
[10] Farkas, J. Z.; Hinow, P., Structured and unstructured continuous models for Wolbachia infections, Bull. Math. Biol., 72, 8, 2067-2088 (2010) · Zbl 1201.92044
[11] Fine, P. E., On the dynamics of symbiote-dependent cytoplasmic incompatibility in Culicine mosquitoes, J. Invertebr. Pathol., 31, 1, 10-18 (1978)
[12] Hancock, P. A.; Sinkins, S. P.; Godfray, H. C.J., Population dynamic models of the spread of Wolbachia, Amer. Nat., 177, 3, 323-333 (2011)
[13] Hu, L.; Huang, M.; Tang, M.; Yu, J.; Zheng, B., Wolbachia spread dynamics in stochastic environments, Theor. Popul. Biol., 106, 32-44 (2015) · Zbl 1343.92482
[14] Huang, M.; Tang, M.; Yu, J., Wolbachia infection dynamics by reaction-diffusion equations, Sci. China Math., 58, 1, 77-96 (2015) · Zbl 1337.35156
[15] Iturbe-Ormaetxe, I.; Walker, T.; O’Neill, S. L., Wolbachia and the biological control of mosquito-borne disease, EMBO Rep., 12, 6, 508-518 (2011)
[16] Keeling, M. J.; Jiggins, F. M.; Read, J. M., The invasion and coexistence of competing Wolbachia strains, Heredity, 91, 4, 382-388 (2003)
[17] Kyle, J. L.; Harris, E., Global spread and persistence of dengue, Annu. Rev. Microbiol., 62, 1, 71-92 (2008)
[18] Laven, H., Cytoplasmic inheritance in Culex, Nature, 177, 141-142 (1956)
[19] Ndiaye, P. I.; Bicout, D. J.; Mondet, B.; Sabatier, P., Rainfall triggered dynamics of Aedes mosquito aggressiveness, J. Theoret. Biol., 243, 2, 222-229 (2006) · Zbl 1447.92573
[20] Rasmussen, S. A.; Jamieson, D. J.; Honein, M. A.; Petersen, L. R., Zika virus and birth defects-reviewing the evidence for causality, N. Engl. J. Med., 374, 1981-1987 (2016)
[21] Wiwatanaratanabutr, S.; Kittayapong, P., Effects of temephos and temperature on Wolbachia load and life history traits of Aedes albopictus, Med. Vet. Entomol., 20, 3, 300-307 (2006)
[22] Yang, H. M.; Macoris, M. L.; Galvani, K. C.; Andrighetti, M. T.; Wanderley, D. M., Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue, Epidemiol. Infect., 137, 8, 1188-1202 (2009)
[23] Zhang, D.; Zheng, X.; Xi, Z.; Bourtzis, K.; Gilles, J. R., Combining the sterile insect technique with the incompatible insect technique: I - impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS ONE, 10, 4, Article e0121126 pp. (2015)
[24] Zhang, X.; Tang, S.; Cheke, R. A., Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math. Biosci., 269, 164-177 (2015) · Zbl 1335.92106
[25] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J. Appl. Math., 74, 3, 743-770 (2014) · Zbl 1303.92124
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.