×

An evaluation of sensory noise in the human visual system. (English) Zbl 0743.92038

Two approximations for the probability of a level-crossing by a nonstationary stochastic process are introduced. The considered process is composed of a deterministic function to which an additive wide-sense stationary Gaussian noise is added. The presented approximations are used for estimation of the threshold \(S\) and of the second spectral moment of the noise. The method is applied in the case of the sinusoidal deterministic part of the process. The data compared with the theory comes from experiments on visual perception, and simultaneously Weibull approximation for level-crossing detection is criticised.
Reviewer: P.Lánský (Praha)

MSC:

91E30 Psychophysics and psychophysiology; perception
60G35 Signal detection and filtering (aspects of stochastic processes)
60G70 Extreme value theory; extremal stochastic processes
Full Text: DOI

References:

[1] Bevan S, Kullberg R, Rice J (1979) An analysis of cell membrane noise. Ann Statist 7:237–257 · Zbl 0405.92004 · doi:10.1214/aos/1176344609
[2] Blackwell HR (1963) Neural theories of simple visual discrimination. J Opt Soc Am 53:129–160 · doi:10.1364/JOSA.53.000129
[3] Blake IF, Lindsay WC (1973) Level-crossing problems for random processes. IEEE Trans Inf Theory It-19:295–315 · Zbl 0264.60036 · doi:10.1109/TIT.1973.1055016
[4] Blommaert FJJ, Roufs JAJ (1987) Prediction of thresholds and latency on the basis of experimentally determined impulse responses. Biol Cybern 56:329–344 · doi:10.1007/BF00319513
[5] Broekhuysen M, Rashbass C, Veringa F (1976) The threshold of visual transients. Vision Res 16:1285–1289 · doi:10.1016/0042-6989(76)90055-9
[6] Cramér H, Leadbetter MR (1967) Stationary and related stochastic processes. Wiley, New York London Sydney
[7] Crozier WJ (1935/1936) On the variability of critical illumination for flicker fusion and intensity discrimination. J Gen Physiol 19:503–522 · doi:10.1085/jgp.19.3.503
[8] De Felice LJ (1981) Introduction to membrane noise. Plenum Press, New York London
[9] Ditlivsen O (1971) Extremes and first passage times with applications in civil engineering. Some approximative results in the theory of stochastic processes. Thesis: Technical University of Denmark, Copenhagen
[10] Fain GL, Granada AM, Maxwell, JH (1977) Voltage signal of photoreceptors at visual threshold. Nature 265:181–183 · doi:10.1038/265181a0
[11] Falmagne JC (1982) Psychometric functions theory. J Math Psychol 25:1–50 · Zbl 0521.92026 · doi:10.1016/0022-2496(82)90045-1
[12] Freeman WJ (1990) On the problem of anomalous dispersion in chaoto-chaotic phase transitions of neural masses, and its significance for the management of perceptual information in brains. In: Haken H, Stadier M (eds) Synergetics of cognition. Springer, Berlin Heidelberg New York
[13] Honerkamp J (1990) Stochastische dynamische Systeme. VCH Verlagsgesellschaft, Weinheim · Zbl 0703.60110
[14] Hüsler J (1986) Personal communication
[15] Kelly DH, Savoie RE (1978) Theory of flicker and transient responses. III. An essential nonlinearity. J Opt Soc Am 68:1481–1490 · doi:10.1364/JOSA.68.001481
[16] Kolb HA (1991) Personal communication
[17] Läuger P (1984) Current noise generated by electrogenic ion pumps. Eur Biophys 11:117–128 · doi:10.1007/BF00276627
[18] Leadbetter MR, Lindgren G, Rootzén H (1983) Extremes and related properties of random sequences and processes. Springer, New York Berlin Heidelberg · Zbl 0518.60021
[19] LeGrand Y (1968) Light, colour and vision. Chapman and Hall, London
[20] Maloney LT, Wandell BA (1984) A model of a single visual channel’s response to weak test lights. Vision Res 24:633–640 · doi:10.1016/0042-6989(84)90203-7
[21] Mortensen U (1988) Visual contrast detection by a single channel versus probability summation among channels. Biol Cybern 59:137–147 · Zbl 0666.92026 · doi:10.1007/BF00317776
[22] Mortensen U, Suhl U (1990) The estimation of sensory noise characteristics from psychophysical data. Unpublished manuscript, FB 8, Universität Münster
[23] Nachmias J (1981) On the psychometric function for contrast detection. Vision Res 21:215–223 · doi:10.1016/0042-6989(81)90115-2
[24] Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw-Hill/Kogakusha, Tokyo · Zbl 0191.46704
[25] Rashbass C (1970) The visibility of transient changes of luminance. J Physiol (London) 210:165–186
[26] Rashbass C (1976) Unification of two contrasting models of the visual incremental threshold. Vision Res 16:1281–1283 · doi:10.1016/0042-6989(76)90054-7
[27] Roufs JAJ (1974) Dynamic properties of vision – IV. Stochastic threshold fluctuations and their effect on flash-to-flicker sensitivity ratio. Vision Res 14:871–888 · doi:10.1016/0042-6989(74)90150-3
[28] Roufs JAJ, Blommaert FJJ (1981) Temporal impulses and step responses of the human eye obtained psychophysically by means of a drift-correcting perturbation technique. Vision Res 21:1203–1221 · doi:10.1016/0042-6989(81)90225-X
[29] Watson AB (1979) Probability summation over time. Vision Res 19:515–522 · doi:10.1016/0042-6989(79)90136-6
[30] Watson AB (1982) Derivation of the impulse response: comments on the method of Roufs and Blommaert. Vision Res 22:1335–1337 · doi:10.1016/0042-6989(82)90146-8
[31] Watson AB, Nachmias J (1977) Patterns of temporal interaction in the detection of gratings. Vision Res 17:893–902 · doi:10.1016/0042-6989(77)90063-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.