×

Spherically symmetric linear perturbations of electrically counterpoised dust. (English) Zbl 1479.83047

Summary: We consider spherically symmetric linear perturbations of static spherically symmetric spacetimes where the matter content is electrically counterpoised dust. We show that the evolution equation for the fluid perturbation implies that the fluid elements move with constant velocities. Therefore there are neither oscillations nor exponential departure from the background solution. We present an explicit example showing that the perturbation could lead to the formation of a black hole.

MSC:

83C40 Gravitational energy and conservation laws; groups of motions
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76T15 Dusty-gas two-phase flows
83C50 Electromagnetic fields in general relativity and gravitational theory
35B20 Perturbations in context of PDEs

Software:

SageMath

References:

[1] Anninos, P.; Rothman, T., Instability of extremal relativistic charged spheres, Phys. Rev. D, 65 (2001) · doi:10.1103/physrevd.65.024003
[2] Bonnor, W. B., The mass of a static charged sphere, Z. Phys., 160, 59-65 (1960) · Zbl 0093.43502 · doi:10.1007/bf01337478
[3] Bonnor, W. B., A model of a spheroidal body, Class. Quantum Grav., 15, 351-356 (1998) · Zbl 0909.53061 · doi:10.1088/0264-9381/15/2/009
[4] Bonnor, W. B.; Wickramasuriya, S. B P., A static body of arbitrarily large density, Int. J. Theor. Phys., 5, 371-375 (1972) · doi:10.1007/bf00713098
[5] Bonnor, W. B.; Wickramasuriya, S. B P., Are very large gravitational redshifts possible?, Mon. Not. R. Astron. Soc., 170, 643-649 (1975) · doi:10.1093/mnras/170.3.643
[6] Das, A., A class of exact solutions of certain classical field equations in general relativity, Proc. R. Soc. A, 267, 1-10 (1962) · Zbl 0103.21403 · doi:10.1098/rspa.1962.0079
[7] Hartle, J. B.; Hawking, S. W., Solutions of the Einstein-Maxwell equations with many black holes, Commun. Math. Phys., 26, 87-101 (1972) · doi:10.1007/bf01645696
[8] Horvat, D.; Ilijić, S.; Narančić, Z., Regular and quasi black hole solutions for spherically symmetric charged dust distributions in the Einstein-Maxwell theory, Class. Quantum Grav., 22, 3817-3831 (2005) · Zbl 1075.83519 · doi:10.1088/0264-9381/22/19/001
[9] Lemos, J. P.; Zanchin, V. T., Class of exact solutions of Einstein’s field equations in higher dimensional spacetimes, d ⩾ 4: Majumdar-Papapetrou solutions, Phys. Rev. D, 71 (2005) · doi:10.1103/physrevd.71.124021
[10] Majumdar, S. D., A class of exact solutions of Einstein’s field equations, Phys. Rev., 72, 390 (1947) · doi:10.1103/physrev.72.390
[11] Meinel, R.; Hütten, M., On the black hole limit of electrically counterpoised dust configurations, Class. Quantum Grav., 28 (2011) · Zbl 1230.83060 · doi:10.1088/0264-9381/28/22/225010
[12] Papapetrou, A., A static solution of the equations of the gravitational field for an arbitrary charge-distribution, Proc. R. Ir. Acad. A, 51, 191-204 (1945) · Zbl 0029.18401
[13] SageMath, The sage mathematics software system (version 9.1) (2020), The Sage Developers
[14] Sagemanifolds (2020)
[15] Varela, V., Construction of sources for Majumdar-Papapetrou spacetimes, Gen. Relativ. Gravit., 35, 1815-1831 (2003) · Zbl 1033.83010 · doi:10.1023/a:1026014114308
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.