×

Symmetry group of the equiangular cubed sphere. (English) Zbl 1478.65093

Summary: The equiangular cubed sphere is a spherical grid, widely used in computational physics. This paper deals with mathematical properties of this grid. We identify the symmetry group, i.e. the group of the orthogonal transformations that leave the cubed sphere invariant. The main result is that it coincides with the symmetry group of a cube. The proposed proof emphasizes metric properties of the cubed sphere. We study the geodesic distance on the grid, which reveals that the shortest geodesic arcs match with the vertices of a cuboctahedron. The results of this paper lay the foundation for future numerical schemes, based on rotational invariance of the cubed sphere.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
76M12 Finite volume methods applied to problems in fluid mechanics
86A10 Meteorology and atmospheric physics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
86-08 Computational methods for problems pertaining to geophysics
20B30 Symmetric groups
52B15 Symmetry properties of polytopes

References:

[1] Armstrong, M. A., Groups and symmetry, Undergraduate Texts in Mathematics, xii+186 pp. (1988), Springer-Verlag, New York · Zbl 0663.20001 · doi:10.1007/978-1-4757-4034-9
[2] bellet2021quadrature J.-B. Bellet, M. Brachet, and J.-P. Croisille, Quadrature and symmetry on the cubed sphere, working paper, https://hal.archives-ouvertes.fr/hal-03223150, 2021.
[3] brachet2018schemas M. Brachet, Sch\'emas compacts hermitiens sur la Sph\`ere: applications en climatologie et oc\'eanographie num\'erique, PhD thesis, 2018 (in French).
[4] Brachet2021 M. Brachet and J.-P. Croisille, Spherical shallow water simulation by a cubed sphere finite difference solver, Quarterly Journal of the Royal Meteorological Society 147(2021), no.735, 786-800.
[5] Chen, Chungang; Xiao, Feng, Shallow water model on cubed-sphere by multi-moment finite volume method, J. Comput. Phys., 227, 10, 5019-5044 (2008) · Zbl 1388.86003 · doi:10.1016/j.jcp.2008.01.033
[6] chevrot2012optimized S. Chevrot, R. Martin, and D. Komatitsch, Optimized discrete wavelet transforms in the cubed sphere with the lifting scheme-implications for global finite-frequency tomography, Geophysical Journal International 191(2012), no.3, 1391-1402.
[7] faham2012weakly M. Faham and H. Nasir, Weakly orthogonal spherical harmonics in a non-polar spherical coordinates and its application to functions on cubed-sphere, Sultan Qaboos University Journal for Science 17(2012), no.2, 200-213.
[8] Ivan, Lucian; De Sterck, Hans; Northrup, Scott A.; Groth, Clinton P. T., Multi-dimensional finite-volume scheme for hyperbolic conservation laws on three-dimensional solution-adaptive cubed-sphere grids, J. Comput. Phys., 255, 205-227 (2013) · Zbl 1349.76340 · doi:10.1016/j.jcp.2013.08.008
[9] jones2010 B. A. Jones, G. H. Born, and G. Beylkin, Comparison of the cubed-sphere gravity model with the spherical harmonics, Journal of Guidance, Control, and Dynamics 33(2010), no.2, 415-425.
[10] Kang, Hyun-Gyu; Cheong, Hyeong-Bin, An efficient implementation of a high-order filter for a cubed-sphere spectral element model, J. Comput. Phys., 332, 66-82 (2017) · Zbl 1380.65303 · doi:10.1016/j.jcp.2016.12.001
[11] kosmann2006groupes Y. Kosmann-Schwarzbach, Groupes et sym\'etries : groupes finis, groupes et alg\`ebres de Lie, repr\'esentations, \'Editions de l’\'Ecole Polytechnique, 2006.
[12] Lee, D.; Palha, A., A mixed mimetic spectral element model of the rotating shallow water equations on the cubed sphere, J. Comput. Phys., 375, 240-262 (2018) · Zbl 1416.65353 · doi:10.1016/j.jcp.2018.08.042
[13] mcgregor1996semi J. L. McGregor, Semi-Lagrangian advection on conformal-cubic grids, Monthly Weather Review 124(1996), no.6, 1311-1322.
[14] nair2005 R. D. Nair, S. J. Thomas, and R. D. Loft, A discontinuous Galerkin transport scheme on the cubed sphere, Monthly Weather Review 133(2005), no.4, 814-828.
[15] peyre2004algebre G. Peyr\'e, L’alg\`ebre discr\`ete de la transform\'ee de Fourier, Ellipses, 2004.
[16] Portelenelle, Brice; Croisille, Jean-Pierre, An efficient quadrature rule on the cubed sphere, J. Comput. Appl. Math., 328, 59-74 (2018) · Zbl 1371.41040 · doi:10.1016/j.cam.2017.06.027
[17] purser2017sets R. J. Purser, Sets of optimally diversified polyhedral orientations, Office note, National Centers for Environmental Prediction (U.S.), 489, 2017.
[18] purser2018mobius R. J. Purser, M\"obius net cubed-sphere gnomonic grids, Office note, National Meteorological Center (U.S.), 496, 2018.
[19] purser1998smooth R. J. Purser and M. Ranci\'c, Smooth quasi-homogeneous gridding of the sphere, Quarterly Journal of the Royal Meteorological Society 124(1998), no.546, 637-647.
[20] purser2017minor R. J. Purser and M. Tong, A minor modification of the gnomonic cubed-shaped sphere grid that offers advantages in the context of implementing moving hurricane nests, Office note, National Centers for Environmental Prediction (U.S.), 486, 2017.
[21] putman2007 W. M. Putman, Development of the finite-volume dynamical core on the cubed-sphere, PhD thesis, 2007.
[22] ranvcic1996global M. Ranci\'c, R. J. Purser, and F. Mesinger, A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates, Quarterly Journal of the Royal Meteorological Society 122(1996), no.532, 959-982.
[23] rancic2017 M. Ranci\'c, R. J. Purser, D. Jovi\'c, R. Vasic, and T. Black, A nonhydrostatic multiscale model on the uniform Jacobian cubed sphere, Monthly Weather Review 145(2017), no.3, 1083-1105.
[24] Rodriguez Bazan, Erick; Hubert, Evelyne, Multivariate interpolation: preserving and exploiting symmetry, J. Symbolic Comput., 107, 1-22 (2021) · Zbl 1479.41002 · doi:10.1016/j.jsc.2021.01.004
[25] Ronchi, C.; Iacono, R.; Paolucci, P. S., The “cubed sphere”: a new method for the solution of partial differential equations in spherical geometry, J. Comput. Phys., 124, 1, 93-114 (1996) · Zbl 0849.76049 · doi:10.1006/jcph.1996.0047
[26] Rossmanith, James A., A wave propagation method for hyperbolic systems on the sphere, J. Comput. Phys., 213, 2, 629-658 (2006) · Zbl 1089.65088 · doi:10.1016/j.jcp.2005.08.027
[27] sadourny1972conservative R. Sadourny, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Monthly Weather Review 100(1972), no.2, 136-144.
[28] Sobolev, S. L., Cubature formulas on the sphere which are invariant under transformations of finite rotation groups, Dokl. Akad. Nauk SSSR, 146, 310-313 (1962) · Zbl 0119.28701
[29] Thomas, Stephen J.; Dennis, John M.; Tufo, Henry M.; Fischer, Paul F., A Schwarz preconditioner for the cubed-sphere, SIAM J. Sci. Comput., 25, 2, 442-453 (2003) · Zbl 1163.65329 · doi:10.1137/S1064827502409420
[30] Ullrich, Paul Aaron; Lauritzen, Peter Hjort; Jablonowski, Christiane, Some considerations for high-order “incremental remap”-based transport schemes: edges, reconstructions, and area integration, Internat. J. Numer. Methods Fluids, 71, 9, 1131-1151 (2013) · Zbl 1431.65147 · doi:10.1002/fld.3703
[31] Washington, Warren M.; Buja, Lawrence; Craig, Anthony, The computational future for climate and Earth system models: on the path to petaflop and beyond, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 367, 1890, 833-846 (2009) · Zbl 1185.86021 · doi:10.1098/rsta.2008.0219
[32] williamson2007evolution D. L. Williamson, The evolution of dynamical cores for global atmospheric models, Journal of the Meteorological Society of Japan. Ser. II 85B(2007), 241-269.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.