×

Classifying local anisotropy formed by rigid molecules: symmetries and tensors. (English) Zbl 1457.76019

Summary: We consider an infinitesimal volume where there are many rigid molecules of the same kind and discuss the description and classification of the local anisotropy in this volume by tensors. First, we examine the symmetry of a rigid molecule, which is described by a point group in SO(3). For each point group in SO(3), we find the tensors invariant under the rotations in the group. These tensors shall be symmetric and traceless. We write down the explicit expressions. The order parameters to describe the local anisotropy are then chosen as some of the invariant tensors averaged about the density function. Next, we discuss the classification of local anisotropy by the symmetry of the whole infinitesimal volume. This mesoscopic symmetry can be recognized by the value of the order parameter tensors in the sense of maximum entropy state. For some sets of order parameter tensors involving different molecular symmetries, we give the classification of mesoscopic symmetries, in which the threefold, fourfold, and polyhedral symmetries are examined.

MSC:

76A02 Foundations of fluid mechanics
76A15 Liquid crystals
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
22E70 Applications of Lie groups to the sciences; explicit representations

References:

[1] J. M. Ball and A. Majumdar, Nematic liquid crystals: From Maier-Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525 (2010), pp. 1-11.
[2] R. Berardi, A. Costantini, L. Muccioli, S. Orlandi, and C. Zannoni, A computer simulation study of the formation of liquid crystal nanodroplets from a homogeneous solution, J. Chem. Phys., 126 (2007), 044905.
[3] R. Berardi, A. P. J. Emerson, and C. Zannoni, Monte Carlo investigations of a Gay-Berne liquid crystal, J. Chem. Soc. Faraday Trans., 89 (1993), pp. 4069-4078.
[4] F. Bisi, E. G. Virga, E. C. Gartland, Jr., G. De Matteis, A. M. Sonnet, and G. E. Durand, Universal mean-field phase diagram for biaxial nematics obtained from a minimax principle, Phys. Rev. E, 73 (2006), 051709.
[5] R. Blaak and B. M. Mulder, Phase diagram of Onsager crosses, Phys. Rev. E, 58 (1998), pp. 5873-5884.
[6] R. Blaak, B. M. Mulder, and D. Frenkel, Cubatic phase for tetrapods, J. Chem. Phys., 120 (2004), pp. 5486-5492.
[7] V. Borshch, Y. Kim, J. Xiang, M. Gao, A. Jákli, V. Panov, J. Vij, C. Imrie, M. Tamba, G. Mehl, and O. Lavrentovich, Nematic twist-bend phase with nanoscale modulation of molecular orientation, Nat. Commun., 4 (2013), 2635.
[8] H. R. Brand and H. Pleiner, Macroscopic behavior of non-polar tetrahedratic nematic liquid crystals, Eur. Phys. J. E, 31 (2010), pp. 37-50.
[9] H. R. Brand, H. Pleiner, and P. Cladis, Tetrahedratic cross-couplings: Novel physics for banana liquid crystals, Phys. A, 351 (2005), pp. 189-197.
[10] P. J. Camp, M. P. Allen, and A. J. Masters, Theory and computer simulation of bent-core molecules, J. Chem. Phys., 111 (1999), pp. 9871-9881.
[11] D. Chen, J. Porada, J. Hooper, A. Klittnick, Y. Shen, M. Tuchband, E. Korblova, D. Bedrov, D. Walba, M. Glaser, J. Maclennan, and N. Clark, Chiral heliconical ground state of nanoscale pitch in a nematic liquid crystal of achiral molecular dimers, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 15931-15936.
[12] F. A. Cotton, Chemical Applications of Group Theory, 3rd ed., Wiley-Interscience, New York, 1971.
[13] P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Oxford Science Publications, Clarendon Press, Oxford, 1993.
[14] G. De Matteis, A. M. Sonnet, and E. G. Virga, Landau theory for biaxial nematic liquid crystals with two order parameter tensors, Contin. Mech. Thermodyn., 20 (2008), pp. 347-374. · Zbl 1160.76313
[15] A. Dewar and P. J. Camp, Dipolar interactions, molecular flexibility, and flexoelectricity in bent-core liquid crystals, J. Chem. Phys., 123 (2005), 174907.
[16] J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. Anal., 113 (1991), pp. 97-120. · Zbl 0729.76008
[17] I. Fatkullin and V. Slastikov, Critical points of the Onsager functional on a sphere, Nonlinearity, 18 (2005), 2565. · Zbl 1092.82016
[18] L. Fel, Tetrahedral symmetry in nematic liquid crystals, Phys. Rev. E, 52 (1995), 702.
[19] A. Ferrarini, The twist-bend nematic phase: Molecular insights from a generalised Maier-Saupe theory, Liq. Cryst., 44 (2017), pp. 45-57.
[20] C. Greco and A. Ferrarini, Entropy-driven chiral order in a system of achiral bent particles, Phys. Rev. Lett., 115 (2015), 147801.
[21] C. Greco, G. R. Luckhurst, and A. Ferrarini, Molecular geometry, twist-bend nematic phase and unconventional elasticity: A generalised Maier-Saupe theory, Soft Matter, 10 (2014), pp. 9318-9323.
[22] J. Han, Y. Luo, W. Wang, P. Zhang, and Z. Zhang, From microscopic theory to macroscopic theory: A systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215 (2015), 741. · Zbl 1309.35076
[23] G. Ji, Q. Wang, P. Zhang, and H. Zhou, Study of phase transition in homogeneous, rigid extended nematics and magnetic suspensions using an order-reduction method, Phys. Fluids, 18 (2006), 123103. · Zbl 1146.76427
[24] J. Katriel, G. Kventsel, G. Luckhurst, and T. Sluckin, Free energies in the Landau and molecular field approaches, Liq. Cryst., 1 (1986), pp. 337-355.
[25] Y. Lansac, P. K. Maiti, N. A. Clark, and M. A. Glaser, Phase behavior of bent-core molecules, Phys. Rev. E, 67 (2003), p. 011703.
[26] H. Liu, H. Zhang, and P. Zhang, Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential, Commun. Math Sci., 3 (2005), pp. 201-218. · Zbl 1092.76007
[27] L. Longa and G. Paja̧k, Modulated nematic structures induced by chirality and steric polarization, Phys. Rev. E, 93 (2016), 040701.
[28] L. Longa, G. Paja̧k, and T. Wydro, Chiral symmetry breaking in bent-core liquid crystals, Phys. Rev. E, 79 (2009), 040701.
[29] T. Lubensky and L. Radzihovsky, Theory of bent-core liquid-crystal phases and phase transitions, Phys. Rev. E, 66 (2002), 031704.
[30] G. R. Luckhurst, S. Naemura, T. J. Sluckin, K. S. Thomas, and S. S. Turzi, Molecular-field-theory approach to the Landau theory of liquid crystals: Uniaxial and biaxial nematics, Phys. Rev. E, 85 (2012), 031705.
[31] R. Memmer, Liquid crystal phases of achiral banana-shaped molecules: A computer simulation study, Liq. Cryst., 29 (2002), pp. 483-496.
[32] B. Mettout, Macroscopic and molecular symmetries of unconventional nematic phases, Phys. Rev. E, 74 (2006), 041701.
[33] C. Meyer, G. Luckhurst, and I. Dozov, Flexoelectrically driven electroclinic effect in the twist-bend nematic phase of achiral molecules with bent shapes, Phys. Rev. Lett., 111 (2013), 067801.
[34] T. D. Nguyen, Z. Zhang, and S. C. Glotzer, Molecular simulation study of self-assembly of tethered V-shaped nanoparticles, J. Chem. Phys, 129 (2008), 244903.
[35] C. Oseen, The theory of liquid crystals, Trans. Faraday Soc., 29 (1933), pp. 883-899. · Zbl 0008.04203
[36] S. M. Shamid, D. W. Allender, and J. V. Selinger, Predicting a polar analog of chiral blue phases in liquid crystals, Phys. Rev. Lett., 113 (2014), 237801.
[37] J. Shen, J. Xu, and P. Zhang, Approximations on \(SO(3)\) by Wigner D-matrix and applications, J. Sci. Comput., 74 (2018), pp. 1706-1724. · Zbl 1398.65321
[38] J. Straley, Ordered phases of a liquid of biaxial particles, Phys. Rev. A, 10 (1974), pp. 1881-1887.
[39] G. Szegö, Orthogonal Polynomials, 4th ed., Vol. 23, Colloquium Publications, American Mathematical Society, Providence, RI, 1975. · Zbl 0305.42011
[40] H. Takezoe and Y. Takanishi, Bent-core liquid crystals: Their mysterious and attractive world, Jpn. J. Appl. Phys., 45 (2006), pp. 597-625.
[41] J. M. Taylor, Maximum entropy methods as the bridge between microscopic and macroscopic theory, J. Stat. Phys., 164 (2016), pp. 1429-1459. · Zbl 1354.82027
[42] W. Tomczyk, G. Paja̧k, and L. Longa, Twist-bend nematic phases of bent-shaped biaxial molecules, Soft Matter, 12 (2016), pp. 7445-7452.
[43] K. Trojanowski, G. Paja̧k, L. Longa, and T. Wydro, Tetrahedratic mesophases, chiral order, and helical domains induced by quadrupolar and octupolar interactions, Phys. Rev. E, 86 (2012), 011704.
[44] N. Vilenkin, Special Functions and the Theory of Group Representations, Transl. Math. Monogr. 22, American Mathematical Society, Providence, RI, 1968. · Zbl 0172.18404
[45] J. Xu, Symmetry-Consistent Expansion of Interaction Kernels between Rigid Molecules, arXiv:2006.09688, preprint, 2020.
[46] J. Xu, F. Ye, and P. Zhang, A tensor model for nematic phases of bent-core molecules based on molecular theory, Multiscale Model. Simul., 16 (2018), pp. 1581-1602. · Zbl 1401.76025
[47] J. Xu and P. Zhang, From microscopic theory to macroscopic theory-Symmetries and order parameters of rigid molecules, Sci. China Math., 57 (2014), pp. 443-468. · Zbl 1299.82016
[48] J. Xu and P. Zhang, The transmission of symmetry in liquid crystals, Commun. Math. Sci., 15 (2017), pp. 185-195. · Zbl 1356.76036
[49] J. Xu and P. Zhang, Calculating elastic constants of bent-core molecules from Onsager-theory-based tensor model, Liq. Cryst., 45 (2018), pp. 22-31.
[50] K. Zhao and T. G. Mason, Shape-designed frustration by local polymorphism in a near-equilibrium colloidal glass, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 12063-12068.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.