×

Spin Hurwitz theory and Miwa transform for the Schur Q-functions. (English) Zbl 1496.81077

Summary: Schur functions are the common eigenfunctions of generalized cut-and-join operators which form a closed algebra. They can be expressed as differential operators in time-variables and also through the eigenvalues of auxiliary \(N \times N\) matrices \(X\), known as Miwa variables. Relevant for the cubic Kontsevich model and also for spin Hurwitz theory is an alternative set of Schur Q-functions. They appear in representation theory of the Sergeev group, which is a substitute of the symmetric group, related to the queer Lie superalgebras \(\mathfrak{q}(N)\). The corresponding spin \(\hat{\mathcal{W}}\)-operators were recently found in terms of time-derivatives, but a substitute of the Miwa parametrization remained unknown, which is an essential complication for the matrix model technique and further developments. We demonstrate that the Miwa representation, in this case, involves a fermionic matrix \(\Psi\) in addition to \(X\), but its realization using supermatrices is not quite naive.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
62H20 Measures of association (correlation, canonical correlation, etc.)
20G43 Schur and \(q\)-Schur algebras
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
15A18 Eigenvalues, singular values, and eigenvectors
20B30 Symmetric groups
17B80 Applications of Lie algebras and superalgebras to integrable systems

References:

[1] Mironov, A.; Morozov, A., On the complete perturbative solution of one-matrix models, Phys. Lett. B, 771, 503-507 (2017) · Zbl 1372.81111
[2] Macdonald, I., Symmetric Functions and Hall Polynomials (1995) · Zbl 0824.05059
[3] Mironov, A.; Morozov, A.; Natanzon, S., Complete set of cut-and-join operators in the Hurwitz-Kontsevich theory, Theor. Math. Phys., 166, 1, 1-22 (2011) · Zbl 1312.81125
[4] Mironov, A.; Morozov, A., Superintegrability of Kontsevich matrix model, Eur. Phys. J. C, 81, 3, 270 (2021)
[5] Mironov, A.; Morozov, A.; Natanzon, S., Cut-and-join structure and integrability for spin Hurwitz numbers, Eur. Phys. J. C, 80, 2, 97 (2020)
[6] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1-23 (1992) · Zbl 0756.35081
[7] Kharchev, S.; Marshakov, A.; Mironov, A.; Morozov, A.; Zabrodin, A., Towards unified theory of 2-d gravity, Nucl. Phys. B, 380, 181-240 (1992)
[8] Eskin, A.; Okounkov, A.; Pandharipande, R., The theta characteristic of a branched covering, Adv. Math., 217, 3, 873-888 (2008) · Zbl 1157.14014
[9] Gunningham, S., Spin Hurwitz numbers and topological quantum field theory, Geom. Topol., 20, 4, 1859-1907 (2016) · Zbl 1347.81070
[10] Lee, J.; Parker, T. H., Recursion formulas for spin Hurwitz numbers (2012)
[11] Goulden, D.; Jackson, D.; Vainshtein, A., The algebra of conjugacy classes in symmetric groups and partial permutations, Ann. Comb., 4, 27-46 (2000) · Zbl 0957.58011
[12] Mironov, A.; Morozov, A.; Natanzon, S., Algebra of differential operators associated with Young diagrams, J. Geom. Phys., 62, 148-155 (2012) · Zbl 1242.22008
[13] Fulton, W.; Harris, J., Representation Theory. A First Course, Graduate Texts in Mathematics, Readings in Mathematics, vol. 129 (1991), Springer-Verlag: Springer-Verlag New York · Zbl 0744.22001
[14] Gerasimov, A.; Kharchev, S.; Marshakov, A.; Mironov, A.; Morozov, A.; Olshanetsky, M., Liouville type models in group theory framework. 1. Finite dimensional algebras, Int. J. Mod. Phys. A, 12, 2523-2584 (1997) · Zbl 1089.81516
[15] Ivanov, V.; Kerov, S., The algebra of conjugacy classes in symmetric groups and partial permutations, J. Math. Sci. (Kluwer), 107, 4212-4230 (2001) · Zbl 0979.20002
[16] Fulton, W., Young Tableaux: with Applications to Representation Theory and Geometry (1997) · Zbl 0878.14034
[17] Cheng, Shun-Jen; Wang, Weiqiang, Dualities and Representations of Lie Superalgebras (2012) · Zbl 1271.17001
[18] Sergeev, A., The tensor algebra of the identity representation as a module over the Lie superalgebras Gl(n,m) and Q(n), Math. USSR Sb., 51, 419-427 (1985) · Zbl 0573.17002
[19] Mironov, A.; Morozov, A.; Zhabin, A., Connection between cut-and-join and Casimir operators, Phys. Lett. B, 822, Article 136668 pp. (2021) · Zbl 07417978
[20] Okounkov, A.; Olshanski, G., Shifted Schur functions, Algebra Anal., 9, 2, 73-146 (1997) · Zbl 0995.33013
[21] Ivanov, V. N., Interpolation analogs of Schur Q-functions, J. Math. Sci., 131, 2, 5495-5507 (2005)
[22] Orlov, A., Notes about KP/BKP correspondence, Theor. Math. Phys., 208, 3, 1207-1227 (2021) · Zbl 1482.81013
[23] Mironov, A.; Morozov, A.; Natanzon, S.; Orlov, A., Around spin Hurwitz numbers, Lett. Math. Phys., 111, 124 (2021) · Zbl 1477.05006
[24] Orlov, A., Hypergeometric functions related to Schur Q-polynomials and the BKP equation, Theor. Math. Phys., 137, 2, 1574-1589 (2003) · Zbl 1178.33015
[25] Kharchev, S.; Marshakov, A.; Mironov, A.; Morozov, A., Generalized Kazakov-Migdal-Kontsevich model: group theory aspects, Int. J. Mod. Phys. A, 10, 2015-2052 (1995) · Zbl 0985.81639
[26] Okounkov, A., Toda equations for Hurwitz numbers, Math. Res. Lett., 7, 447-453 (2000) · Zbl 0969.37033
[27] Orlov, A.; Shcherbin, D. M., Hypergeometric solutions of soliton equations, Theor. Math. Phys., 128, 906-926 (2001) · Zbl 0992.37063
[28] Lando, S., Combinatorial facets of Hurwitz numbers, (Koolen, K.; Xu, M.-Y., Applications of Group Theory to Combinatorics (2008), Taylor & Francis Group: Taylor & Francis Group London), 109-132 · Zbl 1178.30053
[29] Alexandrov, A.; Mironov, A.; Morozov, A.; Natanzon, S., Integrability of Hurwitz partition functions. I. Summary, J. Phys. A, 45, Article 045209 pp. (2012) · Zbl 1259.37040
[30] Date, E.; Jimbo, M.; Kashiwara, M.; Miwa, T., Transformation groups for soliton equations, (RIMS Symp. “Non-linear Integrable Systems - Classical Theory and Quantum Theory” (1983), World Scientific: World Scientific Singapore) · Zbl 0571.35106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.