×

A unified view of Kolmogorov and Lorenz systems. (English) Zbl 1115.76320

Summary: The discussion on the relation between the Kolmogorov system, considered as low-order approximation of Navier-Stokes equations, and the well-known Lorenz equations is still not completely understood. In this Letter, referring to the mathematical theory of motion on Lie groups, a particular class of Kolmogorov systems, largely studied in low-dimensional models of geophysical fluid dynamics, is extended and analysed in its geometric and dynamical features. The dynamical behaviour of this extended and unifying system generally shows chaos, contrarily to the original Kolmogorov one, and actually two well known Lorenz models, useful as toy-models in geophysical fluid dynamics, are included in it.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76E20 Stability and instability of geophysical and astrophysical flows
82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
86A10 Meteorology and atmospheric physics
Full Text: DOI

References:

[1] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1988.; R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1988. · Zbl 0662.35001
[2] Arnold, V. I., Ann. Inst. Fourier (Grenoble), 16, 319 (1966) · Zbl 0148.45301
[3] ECMWF, Predictability, Vols. 1, 2, Seminar Proc., 1996.; ECMWF, Predictability, Vols. 1, 2, Seminar Proc., 1996.
[4] Lorenz, E. N., Tellus, 12, 243 (1960)
[5] Robinson, J. C., Nonlinearity, 11, 529 (1998) · Zbl 0918.34048
[6] Arnold, V. I., Proc. R. Soc. (London) A, 434, 19 (1991) · Zbl 0726.76045
[7] Lorenz, E. N., J. Atmos. Sci., 20, 130 (1963) · Zbl 1417.37129
[8] Bogoyavlenskii, O. I., Math. USSR Izv., 25, 207 (1985)
[9] Trofimov, V. V.; Fomenko, A. T., Russ. Math. Surveys, 39, 1 (1984)
[10] S.P. Novikov, Solitons and Geometry, Lezioni Fermiane, Pisa, 1992.; S.P. Novikov, Solitons and Geometry, Lezioni Fermiane, Pisa, 1992. · Zbl 0881.35002
[11] J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer, Berlin, 1994.; J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer, Berlin, 1994. · Zbl 0811.70002
[12] V.I. Arnold, B.A. Khesin, Topological Methods in Hydrodynamics, Springer, Berlin, 1998.; V.I. Arnold, B.A. Khesin, Topological Methods in Hydrodynamics, Springer, Berlin, 1998. · Zbl 0902.76001
[13] T.N. Krishnamurti, H.S. Bedi, V.M. Hardiker, An Introduction to Global Spectral Modeling, Oxford Univ. Press, Oxford, 1998.; T.N. Krishnamurti, H.S. Bedi, V.M. Hardiker, An Introduction to Global Spectral Modeling, Oxford Univ. Press, Oxford, 1998.
[14] S. Smale, Math. Intelligencer, 1998.; S. Smale, Math. Intelligencer, 1998.
[15] Palmer, T. N., Bull. Am. Met. Soc., 74, 49 (1993)
[16] Wiin-Nielsen, A., Physica D, 77, 33 (1994)
[17] V.I. Arnold, in: L. Sirovich (Ed.), Trends and Perspectives in Applied Mathematics, Springer, Berlin, 1992, p. 1.; V.I. Arnold, in: L. Sirovich (Ed.), Trends and Perspectives in Applied Mathematics, Springer, Berlin, 1992, p. 1.
[18] Zeitlin, V., Physica D, 49, 353 (1991) · Zbl 0724.76004
[19] Zeitlin, V.; Pasmanter, R. A., Phys. Lett. A, 189, 59 (1994) · Zbl 0959.86500
[20] Obukhov, A. M., Sov. Phys. Dokl., 14, 32 (1969)
[21] Milnor, J., Adv. Math., 21, 293 (1976) · Zbl 0341.53030
[22] B.A. Dubrovin, S.P. Novikov, A.T. Fomenko, Modern Geometry, vol. 1, 2nd ed., Springer, Berlin, 1990.; B.A. Dubrovin, S.P. Novikov, A.T. Fomenko, Modern Geometry, vol. 1, 2nd ed., Springer, Berlin, 1990. · Zbl 0703.55001
[23] Pasini, A.; Pelino, V.; Potestà, S., Phys. Lett. A, 241, 77 (1998) · Zbl 0974.76524
[24] J.A. Dutton, The Ceaseless Wind: an Introduction to the Theory of Atmospheric Motion, McGraw-Hill, New York, 1976.; J.A. Dutton, The Ceaseless Wind: an Introduction to the Theory of Atmospheric Motion, McGraw-Hill, New York, 1976.
[25] Morrison, P. J., Rev. Mod. Phys., 70, 467 (1998) · Zbl 1205.37093
[26] Gluhovski, A. B., Sov. Phys. Dokl., 27, 823 (1982)
[27] Gluhovski, A. B.; Agee, E., J. Atmos. Sci., 54, 768 (1996)
[28] Kandrup, H. E.; Morrison, P. J., Ann. Phys. (New York), 225, 114 (1993) · Zbl 0767.35099
[29] C.R. Doering, J.D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Univ. Press, Cambridge, 1995.; C.R. Doering, J.D. Gibbon, Applied Analysis of the Navier-Stokes Equations, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0838.76016
[30] Crawford, J. D., Rev. Mod. Phys., 63, 991 (1991)
[31] M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics, Dynamo Theory and Climate Dynamics, Springer, Berlin, 1987.; M. Ghil, S. Childress, Topics in Geophysical Fluid Dynamics, Dynamo Theory and Climate Dynamics, Springer, Berlin, 1987. · Zbl 0643.76001
[32] Vickroy, J. G.; Dutton, J. A., J. Atmos. Sci., 36, 42 (1979)
[33] F.R. Gantmacher, Theory of Matrices, Chelsea, 1959.; F.R. Gantmacher, Theory of Matrices, Chelsea, 1959. · Zbl 0085.01001
[34] A. Wiin-Nielsen, Tellus 42 A (1979) 378.; A. Wiin-Nielsen, Tellus 42 A (1979) 378.
[35] Ruelle, D.; Takens, F., Commun. Math. Phys., 20, 167 (1971) · Zbl 0227.76084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.