×

Symmetric interior penalty discontinuous Galerkin discretizations and block preconditioning for heterogeneous Stokes flow. (English) Zbl 1516.65080

Summary: Provable stable arbitrary order symmetric interior penalty (SIP) discontinuous Galerkin discretizations of heterogeneous, incompressible Stokes flow utilizing \(Q^2_k\)-\(Q_{k-1}\) elements and hierarchical Legendre basis polynomials are developed and investigated. For solving the resulting linear system, a block preconditioned iterative method is proposed. The nested viscous problem is solved by a \(hp\)-multilevel preconditioned Krylov subspace method. For the \(p\)-coarsening, a two-level method utilizing element-block Jacobi preconditioned iterations as a smoother is employed. Piecewise bilinear (\(Q^2_1\)) and piecewise constant (\(Q^2_0\)) \(p\)-coarse spaces are considered. Finally, Galerkin \(h\)-coarsening is proposed and investigated for the two \(p\)-coarse spaces considered. Through a number of numerical experiments, we demonstrate that utilizing the \(Q^2_1\) coarse space results in the most robust \(hp\)-multigrid method for heterogeneous Stokes flow. Using this \(Q^2_1\) coarse space we observe that the convergence of the overall Stokes solver appears to be robust with respect to the jump in the viscosity and only mildly depending on the polynomial order \(k\). It is demonstrated and supported by theoretical results that the convergence of the SIP discretizations and the iterative methods rely on a sharp choice of the penalty parameter based on local values of the viscosity.

MSC:

65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
65F08 Preconditioners for iterative methods
65F10 Iterative numerical methods for linear systems
76D07 Stokes and related (Oseen, etc.) flows
86A05 Hydrology, hydrography, oceanography
35Q35 PDEs in connection with fluid mechanics
35Q86 PDEs in connection with geophysics
35R05 PDEs with low regular coefficients and/or low regular data

Software:

PETSc

References:

[1] D. Arnold, {\it An interior penalty finite element method with discontinuous elements}, SIAM J. Numer. Anal., 19 (1982), pp. 742-760. · Zbl 0482.65060
[2] D. Arnold, F. Brezzi, B. Cockburn, and L. Marini, {\it Unified analysis of discontinuous Galerkin methods for elliptic problems}, SIAM J. Numer. Anal., 39 (2002), pp. 1749-1779. · Zbl 1008.65080
[3] B. Ayuso de Dios, F. Brezzi, L. D. Marini, J. Xu, and L. Zikatanov, {\it A simple preconditioner for a discontinuous Galerkin method for the Stokes problem}, J. Sci. Comput., 58 (2014), pp. 517-547. · Zbl 1299.76128
[4] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, {\it PETSc Users Manual}, Tech. Report ANL-95/11, Revision 3.7, Argonne National Laboratory, 2016.
[5] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, {\it PETSc}, (2016).
[6] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, {\it Modern Software Tools in Scientific Computing}, in Efficient Management of Parallelism in Object Oriented Numerical Software Libraries, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser, Basel, 1997, pp. 163-202. · Zbl 0882.65154
[7] P. Bastian, {\it A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure}, Comput. Geosci., 18 (2014), pp. 779-796. · Zbl 1392.76072
[8] P. Bastian, M. Blatt, and R. Scheichl, {\it Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems: AMG \(4\) dg}, Numer. Linear Algebra Appl., 19 (2012), pp. 367-388. · Zbl 1274.65313
[9] J. Braun, C. Thieulot, P. Fullsack, M. DeKool, C. Beaumont, and R. Huismans, {\it DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems}, Phys. Earth Planetary Interiors, 171 (2008), pp. 76-91.
[10] S. C. Brenner, {\it Korn’s inequalities for piecewise \({H}^1\) vector fields}, Math. Comp., 73 (2004), pp. pp. 1067-1087. · Zbl 1055.65118
[11] F. Brezzi and M. Fortin, {\it Mixed and Hybrid Finite Element Methods}, Springer, New York, 1991. · Zbl 0788.73002
[12] P. N. Brown and H. F. Walker, {\it GMRES on (nearly) singular systems}, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 37-51. · Zbl 0876.65019
[13] C. Burstedde, O. Ghattas, G. Stadler, T. Tu, and L. C. Wilcox, {\it Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems}, Comput. Methods Appl. Mech. Engrg., 198 (2009), pp. 1691-1700. · Zbl 1227.76027
[14] B. Cockburn, G. Kanschat, and D. Schötzau, {\it A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations}, J. Sci. Comput., 31 (2007), pp. 61-73. · Zbl 1151.76527
[15] V. A. Dobrev, R. D. Lazarov, P. S. Vassilevski, and L. T. Zikatanov, {\it Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations}, Numer. Linear Algebra Appl., 13 (2006), pp. 753-770. · Zbl 1224.65263
[16] M. Drosson and K. Hillewaert, {\it On the stability of the symmetric interior penalty method for the Spalart-Allmaras turbulence model}, J. Comput. Appl. Math., 246 (2013), pp. 122-135. · Zbl 1426.76250
[17] T. Duretz, D. A. May, T. V. Gerya, and P. J. Tackley, {\it Discretization errors and free surface stabilization in the finite difference and marker-in-cell method for applied geodynamics: A numerical study: FD-MIC scheme discretization errors}, Geochemistry Geophysics Geosystems, 12 (2011).
[18] T. Duretz, D. A. May, and P. Yamato, {\it A free surface capturing discretization for the staggered grid finite difference scheme}, Geophys. J. Internat., 204 (2016), pp. 1518-1530.
[19] H. Elman, D. Silvester, and A. Wathen, {\it Finite Elements and Fast Iterative Solvers}, Oxford University Press, New York, 2005. · Zbl 1083.76001
[20] H. C. Elman, D. J. Silvester, and A. J. Wathen, {\it Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics}, Oxford University Press, New York, 2014. · Zbl 1304.76002
[21] P. Fullsack, {\it An arbitrary Lagrangian-Eulerian formulation for creeping flows and its application in tectonic models}, Geophys. J. Interat., 120 (1995), pp. 1-23.
[22] T. V. Gerya, D. A. May, and T. Duretz, {\it An adaptive staggered grid finite difference method for modeling geodynamic stokes flows with strongly variable viscosity}, Geochemistry Geophysics Geosystems, 14 (2013), pp. 1200-1225.
[23] T. V. Gerya and D. A. Yuen, {\it Charaterictics-based marker method with conservative finite-difference schemes for modeling geological flows with strongly variable transport properties}, Phys. Earth Planetary Interiors, 140 (2003), pp. 293-318.
[24] K. Hillewaert, {\it Development of the Discontinuous Galerkin Method for High-Resolution, Large Scale CFD and Acoustics in Industrial Geometries}, Ph.D. thesis, Université Catholique de Louvain, 2013.
[25] G. Kanschat and Y. Mao, {\it Multigrid methods for \(H^\text{div} \)-conforming discontinuous Galerkin methods for the Stokes equations}, J. Numer. Math., 23 (2015), pp. 51-66. · Zbl 1330.76071
[26] S.-I. Karato, {\it Phase transformations and rheological properties of mantle minerals}, Earth’s Deep Interior, 7 (1997), pp. 223-272.
[27] M. Kronbichler, T. Heister, and W. Bangerth, {\it High accuracy mantle convection simulation through modern numerical methods: High accuracy mantle convection simulation}, Geophys. J. Internat., 191 (2012), pp. 12-29.
[28] S. M. Lechmann, D. A. May, B. J. P. Kaus, and S. M. Schmalholz, {\it Comparing thin-sheet models with 3-D multilayer models for continental collision}, Geophys. J. Internat., 187 (2011), pp. 10-33.
[29] R. S. Lehmann, M. Luká\vcová-Medvid’ová, B. J. P. Kaus, and A. A. Popov, {\it Comparison of continuous and discontinuous Galerkin approaches for variable-viscosity Stokes flow}, ZAMM Z. Angew. Math. Mech., 96 (2016), pp. 733-746. · Zbl 07775061
[30] W. Leng and S. J. Zhong, {\it Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies}, Geochemistry Geophysics Geosystems, 12 (2011), Q04006.
[31] D. A. May, J. Brown, and L. Le Pourhiet, {\it A scalable, matrix-free multigrid preconditioner for finite element discretizations of heterogeneous stokes flow}, Comput. Methods Appl. Mech. Engrg., 290 (2015), pp. 496-523. · Zbl 1423.76259
[32] D. A. May and L. Moresi, {\it Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics}, Phys. Earth Planetary Interiors, 171 (2008), pp. 33-47.
[33] L. Moresi, F. Dufour, and H.-B. Mühlhaus, {\it A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials}, J. Comput. Phys., 184 (2003), pp. 476-497. · Zbl 1047.74540
[34] L. Moresi, S. Quenette, V. Lemiale, C. Mériaux, B. Appelbe, and H.-B. Mühlhaus, {\it Computational approaches to studying non-linear dynamics of the crust and mantle}, Phys. Earth Planetary Interiors, 163 (2007), pp. 69-82.
[35] A. Poliakov and Y. Podladchikov, {\it Diapirism and topography}, Geophys. J. Internat., 109 (1992), pp. 553-564.
[36] A. A. Popov and S. V. Sobolev, {\it SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology}, Phys. Earth Planetary Interiors, 171 (2008), pp. 55-75.
[37] G. Ranalli, {\it Rheology of the Earth}, Springer Science & Business Media, New York, 1995.
[38] D. Schötzau, C. Schwab, and A. Toselli, {\it Mixed \(hp\)-DGFEM for incompressible flows}, SIAM J. Numer. Anal., 40 (2002), pp. 2171-2194. · Zbl 1055.76032
[39] D. Schötzau, C. Schwab, and A. Toselli, {\it Mixed \(hp\)-DGFEM for incompressible flows II: Geometric edge meshes}, IMA J. Numer. Anal., 24 (2004), pp. 273-308. · Zbl 1114.76046
[40] G. Schubert, D. L. Turcotte, and P. Olson, {\it Mantle Convection in the Earth and Planets}, Cambridge University Press, Cambridge, UK, 2001.
[41] K. Stemmer, H. Harder, and U. Hansen, {\it A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth’s mantle}, Phys. Earth Planetary Interiors, 157 (2006), pp. 223-249.
[42] P. J. Tackley, {\it Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid}, Phys. Earth Planetary Interiors, 171 (2008), pp. 7-18.
[43] A. Toselli, {\it \(hp\) discontinuous Galerkin approximations for the Stokes problem}, Math. Models Methods Appl. Sci., 12 (2002), pp. 1565-1597. · Zbl 1041.76045
[44] D. L. Turcotte, K. E. Torrance, and A. T. Hsui, {\it Convection in the Earth’s Mantle}, in Methods in Computational Physics: Geophysics, Academic Press, New York, 1973, pp. 431-454.
[45] P. van Slingerland and C. Vuik, {\it Fast linear solver for diffusion problems with applications to pressure computation in layered domains}, Comput. Geosci., 18 (2014), pp. 343-356. · Zbl 1386.65111
[46] P. van Slingerland and C. Vuik, {\it Scalable two-level preconditioning and deflation based on a piecewise constant subspace for (SIP)DG systems for diffusion problems}, J. Comput. Appl. Math., 275 (2015), pp. 61-78. · Zbl 1297.65036
[47] J. Wang and X. Ye, {\it New finite element methods in computational fluid dynamics by H(div) elements}, SIAM J. Numer. Anal., 45 (2007), pp. 1269-1286. · Zbl 1138.76049
[48] R. F. Weinberg and H. Schmeling, {\it Polydiapirs: Multiwave length gravity structures}, J. Structural Geol., 14 (1992), pp. 425-436.
[49] S. Zaleski and P. Julien, {\it Numerical simulation of Rayleigh-Taylor instability for single and multiple salt diapirs}, Tectonophysics, 206 (1992), pp. 55-69.
[50] S. Zhong, {\it Analytic solutions for Stokes’ flow with lateral variations in viscosity}, Geophys. J. Internat., 124 (1996), pp. 18-28.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.