×

Numerical study of the primitive equations in the small viscosity regime. (English) Zbl 1431.35125

Summary: In this paper we study the flow dynamics governed by the primitive equations in the small viscosity regime. We consider an initial setup consisting on two dipolar structures interacting with a no slip boundary at the bottom of the domain. The generated boundary layer is analyzed in terms of the complex singularities of the horizontal pressure gradient and of the vorticity generated at the boundary. The presence of complex singularities is correlated with the appearance of secondary recirculation regions. Two viscosity regimes, with different qualitative properties, can be distinguished in the flow dynamics.

MSC:

35Q35 PDEs in connection with fluid mechanics
76F40 Turbulent boundary layers
35A21 Singularity in context of PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
86A05 Hydrology, hydrography, oceanography
86A10 Meteorology and atmospheric physics
35Q86 PDEs in connection with geophysics
76V05 Reaction effects in flows
76D05 Navier-Stokes equations for incompressible viscous fluids
41A50 Best approximation, Chebyshev systems

Software:

Matlab
Full Text: DOI

References:

[1] Baker, G., Caflisch, R., Siegel, M.: Singularity formation during Rayleigh-Taylor instability. J. Fluid Mech. 252, 51-75 (1993) · Zbl 0791.76027
[2] Bernardi, C., Maday, Y.: Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9(3), 395-414 (1999) · Zbl 0944.76058
[3] Boyd, J.: Chebyshev and Fourier Spectral Methods, p. 11501. DOVER Publications, Mineoal (2000)
[4] Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495-512 (1999) · Zbl 0984.35131
[5] Caflisch, R.: Singularity formation for complex solutions of the 3D incompressible Euler equations. Physica D 67(1-3), 1-18 (1993) · Zbl 0789.76013
[6] Caflisch, R., Gargano, F., Sammartino, M., Sciacca, V.: Complex singularities and PDEs. Riv. Mat. Univ. Parma 6(1), 69-133 (2015) · Zbl 1342.65193
[7] Caflisch, R., Gargano, F., Sammartino, M., Sciacca, V.: Regularized Euler-\[ \alpha\] α motion of an infinite array of vortex sheets. Boll. Unione Mat. Ital. 10(1), 113-141 (2017) · Zbl 1367.35113
[8] Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Computational Physics. Springer, Berlin (1988) · Zbl 0658.76001
[9] Cao, C., Ibrahim, S., Nakanishi, K., Titi, E.: Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337(2), 473-482 (2015) · Zbl 1317.35262
[10] Cao, C., Titi, E.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166(1), 245-267 (2007) · Zbl 1151.35074
[11] Carrier, G., Krook, M., Pearson, C.: Functions of a Complex Variable: Theory and Technique. McGraw-Hill, New York (1966) · Zbl 0146.29801
[12] Cichowlas, C., Brachet, M.E.: Evolution of complex singularities in Kida-Pelz and Taylor-Green inviscid flows. Fluid Dyn. Res. 36(4-6), 239-248 (2005) · Zbl 1153.76393
[13] Clercx, H., van Heijst, G.: Dissipation of coherent structures in confined two-dimensional turbulence. Phys. Fluids 29(11), 111,103 (2017)
[14] Clercx, H., Bruneau, C.H.: The normal and oblique collision of a dipole with a no-slip boundary. Comput. Fluids 35(3), 245-279 (2006) · Zbl 1160.76328
[15] Clercx, H., van Heijst, G.: Dissipation of kinetic energy in two-dimensional bounded flows. Phys. Rev. E 65(6), 066,305 (2002)
[16] Cowley, S.: Computer extension and analytic continuation of Blasius’ expansion for impulsively flow past a circular cylinder. J. Fluid Mech. 135, 389-405 (1983) · Zbl 0525.76033
[17] Della Rocca, G., Lombardo, M., Sammartino, M., Sciacca, V.: Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl. Numer. Math. 56(8), 1108-1122 (2006) · Zbl 1096.76036
[18] Frisch, U., Matsumoto, T., Bec, J.: Singularities of Euler flow? Not out of the blue!. J. Stat. Phys. 113(5), 761-781 (2003) · Zbl 1058.76011
[19] Gargano, F., Ponetti, G., Sammartino, M., Sciacca, V.: Complex singularities in KdV solutions. Ric. Mat. 65(2), 479-490 (2016) · Zbl 1356.35201
[20] Gargano, F., Sammartino, M., Sciacca, V.: Singularity formation for Prandtl’s equations. Physica D 238(19), 1975-1991 (2009) · Zbl 1191.76039
[21] Gargano, F., Sammartino, M., Sciacca, V.: High Reynolds number Navier-Stokes solutions and boundary layer separation induced by a rectilinear vortex. Comput. Fluids 52, 73-91 (2011) · Zbl 1271.76066
[22] Gargano, F., Sammartino, M., Sciacca, V.: Fluid mechanics: singular behavior of a vortex layer in the zero thickness limit. Rend. Lincei Math. Appl. 28(3), 553-572 (2017) · Zbl 1372.76025
[23] Gargano, F., Sammartino, M., Sciacca, V., Cassel, K.: Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions. J. Fluid Mech. 747, 381-421 (2014) · Zbl 1325.76058
[24] Gargano, F., Sammartino, M., Sciacca, V., Cassel, K.: Viscous-inviscid interactions in a boundary-layer flow induced by a vortex array. Acta Appl. Math. 132, 295-305 (2014) · Zbl 1305.76027
[25] Grenier, E.: On the derivation of homogeneous hydrostatic equations. Math. Model. Numer. Anal. 33(5), 965-970 (1999) · Zbl 0947.76013
[26] Klein, C., Roidot, K.: Numerical study of shock formation in the dispersionless Kadomtsev-Petviashvili equation and dispersive regularizations. Physica D 265, 1-25 (2013) · Zbl 1291.35292
[27] Kramer, W., Clercx, H., van Heijst, G.: Vorticity dynamics of a dipole colliding with a no-slip wall. Phys. Fluids 19(12), 126,603 (2007) · Zbl 1182.76399
[28] Krasny, R.: A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167, 65-93 (1986) · Zbl 0601.76038
[29] Kukavica, I., Lombardo, M., Sammartino, M.: Zero viscosity limit for analytic solutions of the primitive equations. Arch. Rational Mech. Anal. 222(1), 15-45 (2016) · Zbl 1379.35247
[30] Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739-2753 (2007) · Zbl 1136.35069
[31] Kukavica, I., Ziane, M.: The regularity of solutions of the primitive equations of the ocean in space dimension three. C. R. Math. 345(5), 257-260 (2007) · Zbl 1174.35097
[32] Levermore, C., Sammartino, M.: A shallow water model with eddy viscosity for basins with varying bottom topography. Nonlinearity 14(6), 1493-1515 (2001) · Zbl 0999.76033
[33] Lions, J.L., Temam, R., Wang, S.: On the equations of the large-scale ocean. Nonlinearity 5(5), 1007-1053 (1992) · Zbl 0766.35039
[34] Lions, J.L., Temam, R., Wang, S.: Mathematical theory for the coupled atmosphere-ocean models. J. Math. Pures Appl. 74(2), 105-163 (1995) · Zbl 0866.76025
[35] Lions, J.L., Temam, R., Wang, S.: A simple global model for the general circulation of the atmosphere. Commun. Pure Appl. Math. 50(8), 707-752 (1997) · Zbl 0992.86001
[36] Lions, P.L.: Mathematical topics in fluid mechanics, vol. 1. Oxford Lecture Series in Mathematics and its Applications, vol. 3. Incompressible models. The Clarendon Press, Oxford University Press, New York (1996) · Zbl 0866.76002
[37] Masmoudi, N., Wong, T.K.: On the \[H^sHs\] theory of hydrostatic Euler equations. Arch. Rational Mech. Anal. 204(1), 231-271 (2012) · Zbl 1317.76017
[38] Matsumoto, T., Bec, J., Frisch, U.: The analytic structure of 2D Euler flow at short times. Fluid Dyn. Res. 36(4-6), 221-237 (2005) · Zbl 1153.76325
[39] Nguyen Van Yen, R., Farge, M., Schneider, K.: Energy dissipating structures produced by walls in two-dimensional flows at vanishing viscosity. Phys. Rev. Lett. 106, 184502 (2011)
[40] Obabko, A., Cassel, K.: Navier-Stokes solutions of unsteady separation induced by a vortex. J. Fluid Mech. 465, 99-130 (2002) · Zbl 1127.76326
[41] Obabko, A., Cassel, K.: On the ejection-induced instability in Navier-Stokes solutions of unsteady separation. Philos. Trans. A Math. Phys. Eng. Sci. 363(1830), 1189-1198 (2005) · Zbl 1152.76381
[42] Pauls, W., Matsumoto, T., Frisch, U., Bec, J.: Nature of complex singularities for the 2D Euler equation. Physica D 219(1), 40-59 (2006) · Zbl 1136.76315
[43] Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1979) · Zbl 0429.76001
[44] Peyret, R.: Spectral Methods for Incompressible Viscous Flow. Springer, New York (2002) · Zbl 1005.76001
[45] Schonbek, M.: \[l^2\] l2 decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 88(3), 209-222 (1985) · Zbl 0602.76031
[46] Sciacca, V., Schonbek, M., Sammartino, M.: Long time behavior for a dissipative shallow water model. Ann. Inst. H. Poincare Anal 34(3), 731-757 (2017) · Zbl 1383.35174
[47] Shelley, M.: A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method. J. Fluid. Mech. 244, 493-526 (1992) · Zbl 0775.76047
[48] Sohn, S.I.: Singularity formation and nonlinear evolution of a viscous vortex sheet model. Phys. Fluids 25(1), 014,106 (2013) · Zbl 1310.76048
[49] Temam, R., Ziane, M.: Some Mathematical Problems in Geophysical Fluid Dynamics. Handbook of Mathematical Fluid Dynamics, vol. III. North-Holland, Amsterdam (2004) · Zbl 1222.35145
[50] Trefethen, L.: Spectral Methods in MATLAB. Environments, and Tools. Society for Industrial and Applied Mathematics, Software (2000) · Zbl 0953.68643
[51] Zheng, L., Wang, S.: Finite-time blowup for the 3-D primitive equations of oceanic and atmospheric dynamics. Appl. Math. Lett. 76, 117-122 (2018) · Zbl 1378.35049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.