×

On the existence and uniqueness of solution to a stochastic chemotaxis-Navier-Stokes model. (English) Zbl 1534.35456

Summary: In this article, we study a mathematical system modelling the dynamic of the collective behaviour of oxygen-driven swimming bacteria in an aquatic fluid flowing in a two dimensional bounded domain under stochastic perturbation. This model can be seen as a stochastic version of Chemotaxis-Navier-Stokes model. We prove the existence of a unique (probabilistic) strong solution. In addition, we establish some properties of the strong solution. More precisely, we prove that the unique solution is positive and satisfies the mass conservation property and an energy inequality.

MSC:

35R60 PDEs with randomness, stochastic partial differential equations
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
35Q35 PDEs in connection with fluid mechanics
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
76M35 Stochastic analysis applied to problems in fluid mechanics
86A05 Hydrology, hydrography, oceanography
92C17 Cell movement (chemotaxis, etc.)

References:

[1] Adams, R. A., Sobolev Spaces, (1975), Academic Press: Academic Press New York-London · Zbl 0314.46030
[2] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differebtial Equations, (2010), Springer: Springer Newyork London · Zbl 1218.46002
[3] Brzézniak, Z.; Ferrario, B., A note on stochastic Navier-Stokes equations with not regular multiplicative noise, Stoch. PDE: Anal Comput., 5, 53-80, (2017) · Zbl 1360.76217
[4] Brzézniak, Z.; Hausenblas, E.; Razafimandimby, P. A., A note on the stochastic Ericksen-Leslie equation for nematic liquid crystals, Discrete Contin. Dyn. Syst., 24, 5785-5802, (2019) · Zbl 1423.60096
[5] Brzézniak, Z.; Hornung, F.; Weis, L., Martingale solutions for the stochastic nonlinear Schrödinger equation in the energy space, Probab. Theory Related Fields, 174, 1273-1338, (2019) · Zbl 1420.35276
[6] Brzézniak, Z.; Manna, U.; Panda, A. A., Martingale solutions of nematic liquid crystals driven by pure jump noise in the Marcus canonical form, J. Differential Equations, 10, 6204-6283, (2019) · Zbl 1418.60068
[7] Brzézniak, Z.; Motyl, E., Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains, J. Differ. Equ., 254, 1627-1685, (2013) · Zbl 1259.35230
[8] Cao, X.; Lankeit, J., Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities, Calc. Var., 55, 1-39, (2016) · Zbl 1366.35075
[9] Chae, M.; Kang, K.; Lee, J., On existence of the smooth solutions to the coupled chemotaxis-fluid equations, Discrete Contin. Dyn. Syst. A, 33, 2271-2297, (2013) · Zbl 1277.35276
[10] Christiansen, F. B.; Fenchel, T. M., Theories of Population in Biological Communities, (1977), Springer-Verlag: Springer-Verlag Berlin-Heidelberg · Zbl 0354.92025
[11] Da Prato, G.; Zabczyk, J., (Stochastic Equations in Infinite Dimensions. Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, vol. 152, (2014), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 1317.60077
[12] Denis, L.; Matoussi, A., Maximum principle for quasilinear spde’s on a bounded domain without regularity assumptions, Stochastic Process. Appl., 12, 1104-1137, (2013) · Zbl 1261.60063
[13] Duan, R.; Li, X.; Xiang, Z., Global existence and large time behaviour for a two-dimensional chemotaxis-Navier-Stokes system, J. Differential Equations, 263, 6284-6316, (2017) · Zbl 1378.35160
[14] Duan, R.; Lorz, A.; Markowich, P., Global solutions to the coupled chemotaxis-fluid equations, Comm. Partial Differential Equations, 35, 1635-1673, (2010) · Zbl 1275.35005
[15] Duan, J.; Wang, W., Effective Dynamics of Stochastic Partial Differential Equations, (2014), Elsevier Insights: Elsevier Insights Elsevier, Amsterdam · Zbl 1298.60006
[16] Duan, R.; Xiang, Z., A note on global existence for the chemotaxis Stokes model with nonlinear diffusion, Int. Math. Res. Not. IMRN, 2014, 1833-1852, (2014) · Zbl 1323.35184
[17] Francesco, M. D.; Lorz, A.; Markowich, P. A., Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Discrete Contin. Dyn. Syst., 2010, 28, (2010), 1437-1453 · Zbl 1276.35103
[18] Haroske, D. D.; Triebel, H., (Distributions, Sobolev Spaces, Elliptic Equations. Distributions, Sobolev Spaces, Elliptic Equations, EMS Textbooks in Mathematics, (2008), European Mathematical Society: European Mathematical Society Zürich) · Zbl 1133.46001
[19] Joffe, A.; Métivier, M., Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. Appl. Probab., 18, 20-65, (1986) · Zbl 0595.60008
[20] Krylov, N. V.; Rozovskii, B. L., Stochastic evolution equations, J. Sov. Math., 16, 1233-1277, (1981) · Zbl 0462.60060
[21] Li, X.; Xiao, Y., Global existence and boundedness in a 2D Keller-Segel-Stokes system, Nonlinear Anal. RWA, 37, 14-30, (2017) · Zbl 1394.35241
[22] Liu, J. G.; Lorz, A., A coupled chemotaxis-fluid model, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28, 643-652, (2011) · Zbl 1236.92013
[23] Mayorcas, A.; Tomǎsević, M., Blow-up for a stochastic model of chemotaxis driven by conservative noise on \(\mathbb{R}^2\), (2022), arXiv:2111.02245
[24] Mizoguchi, N.; Souplet, P., Nondegeneracy of blow-up points for the parabolic Keller-Segel systemn, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31, 851-875, (2014) · Zbl 1302.35075
[25] Motyl, E., Stochastic Navier-Stokes equations driven by Levy noise in unbounded 3D domains, Potential Anal., 38, 863-912, (2013) · Zbl 1282.35282
[26] Nisbet, R. M.; Gurney, W. S.C., Modelling Fluctuating Populations, (2003), Blackburn Press
[27] Prévôt, C.; Röckner, M., (A Concise Course on Stochastic Partial Differential Equations. A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, (2007), Springer: Springer Berlin) · Zbl 1123.60001
[28] Protter, P. E., Stochastic Integration and Differential Equations, Stochastic Modelling and Applied and Applied Probability, (2004), Springer: Springer Berlin · Zbl 1041.60005
[29] Rogers, L. C.; Williams, D., Diffusions, Markov Processes and Martingales, (2000), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0949.60003
[30] Tao, Y.; Winkler, M., Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion, Discrete Contin. Dyn. Syst. A, 32, 1901-1914, (2012) · Zbl 1276.35105
[31] Tao, Y.; Winkler, M., Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 157-178, (2013) · Zbl 1283.35154
[32] Taylor, M. E., (Partial Differential Equation I: Basic Theory. Partial Differential Equation I: Basic Theory, Applied Mathematical Sciences, (2011), Springer) · Zbl 1206.35002
[33] Temam, R., Navier-Stokes Equations, (1979), North-Holland: North-Holland Amsterdam · Zbl 0426.35003
[34] Tuval, I.; Cisneros, L.; Dombrowski, C.; Wolgemuth, C. W.; Kessler, J. O.; Goldstein, R. E., Bacterial swimming and oxygen transport near contact lines, Proc. Natl. Acad. Sci., 102, 2277-2282, (2005) · Zbl 1277.35332
[35] van der Vaart, A. W.; Wellner, J. A., Weak Convergence and Empirical Processes, (1996), Springer: Springer New York · Zbl 0862.60002
[36] Winkler, M., Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Partial Differential Equations, 37, 319-351, (2012) · Zbl 1236.35192
[37] Winkler, M., Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33, 1329-1352, (2016) · Zbl 1351.35239
[38] Zhai, J.; Zhang, T., 2D stochastic Chemotaxis-Navier-Stokes system, J. Math. Pures Appl., 138, 307-355, (2020) · Zbl 1439.60064
[39] Zhang, L.; Liu, B., Global martingale solution for the three-dimensional stochastic chemotatix-Navier-Stokes system, (2022), arXiv:2209.06500v1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.