×

How sensitive are Lagrangian coherent structures to uncertainties in data? (English) Zbl 1503.37090

Summary: Lagrangian coherent structures (LCSs) are time-varying entities which capture the most influential transport features of a flow. These can for example identify groups of particles which have greatest stretching, or which maintain a coherent jet or vortical structure. While many different LCS methods have been developed, the impact of the inevitable measurement uncertainty in realistic Eulerian velocity data has not been studied in detail. This article systematically addresses whether LCS methods are self-consistent in their conclusions under such uncertainty for nine different methods: the finite time Lyapunov exponent, hyperbolic variational LCSs, Lagrangian averaged vorticity deviation, Lagrangian descriptors, stochastic sensitivity, the transfer operator, the dynamic Laplacian operator, fuzzy c-means clustering and coherent structure colouring. The investigations are performed for two different realistic data sets: a computational fluid dynamics simulation of a Kelvin-Helmholtz instability, and oceanographic data of the Gulf Stream region. Using statistics gleaned from stochastic simulations, it is shown that the methods which detect full-dimensional coherent flow regions are significantly more robust than methods which detect lower-dimensional flow barriers. Additional insights into which aspects of each method are self-consistent, and which are not, are provided.

MSC:

37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
76D17 Viscous vortex flows
86A05 Hydrology, hydrography, oceanography
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
76D05 Navier-Stokes equations for incompressible viscous fluids
76F65 Direct numerical and large eddy simulation of turbulence
37B55 Topological dynamics of nonautonomous systems

Software:

LCS Tool
Full Text: DOI

References:

[1] Allshouse, M. R.; Peacock, T., Lagrangian based methods for coherent structure detection, Chaos, 25, 9, Article 097617 pp. (2015)
[2] Hadjighasem, A.; Farazmand, M.; Blazevski, D.; Froyland, G.; Haller, G., A critical comparison of Lagrangian methods for coherent structure detection, Chaos, 27, 5, Article 053104 pp. (2017) · Zbl 1465.76096
[3] Balasuriya, S.; Ouellette, N. T.; Rypina, I. I., Generalized Lagrangian coherent structures, Physica D, 372, 31-51 (2018) · Zbl 1391.76002
[4] Shadden, S., Lagrangian coherent structures, (Grigoriev, R., Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents (2011), Wiley)
[5] Haller, G., Lagrangian Coherent Structures, Annu. Rev. Fluid Mech., 47, 137-162 (2015)
[6] Nolan, P. J.; Foroutan, H.; Ross, S. D., Pollution Transport Patterns Obtained Through Generalized Lagrangian Coherent Structures, Multidiscip. Digit. Publ. Inst.: Atmosphere, 11, 2, 168 (2020)
[7] Schmale, D.; Ross, S., High-Flying Microbes, Sci. Am., 316, 2, 40-45 (2017)
[8] Bettencourt, J.; Rossi, V.; Hernández-García, E.; Marta-Almeida, M.; López, C., Characterization of the structure and cross-shore transport properties of a coastal upwelling filament using three-dimensional finite-size Lyapunov exponents, J. Geophys. Res.: Oceans, 122, 9, 7433-7448 (2017)
[9] Froyland, G.; Stuart, R. M.; van Sebille, E., How well-connected is the surface of the global ocean?, Chaos, 24, 3, Article 033126 pp. (2014) · Zbl 1374.86009
[10] Kelley, D.; Allshouse, M.; Ouellette, N., Lagrangian coherent structures separate dynamically distinct regions in fluid flows, Phys. Rev. E, 88, Article 013017 pp. (2013)
[11] von Kameke, A.; Kastens, S.; Rüttinger, S.; Herres-Pawlis, S.; Schlüter, M., How coherent structures dominate the residence time in a bubble wake: An experimental example, Chem. Eng. Sci., 207, 2, 317-326 (2019)
[12] Gowen, S.; Solomon, T., Experimental studies of coherent structures in an advection-reactiondiffusion system, Chaos, 25, 8, Article 087403 pp. (2015)
[13] Raben, S.; Ross, S.; Vlachos, P., Experimental determination of three-dimensional finite-time Lyapunov exponents in multi-component flows, Exp. Fluids, 55, 1824 (2014)
[14] Farghadan, A.; Coletti, F.; Arzani, A., Topological analysis of particle transport in lung airways: Predicting particle source and destination, Comput. Biol. Med., 115, C, Article 103497 pp. (2019)
[15] Cheng, H.-Y.; Long, X.-P.; Ji, B.; Zhu, Y.; Zhou, J.-J., Numerical investigation of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint, J. Hydrodyn., 28, 4, 709-712 (2016)
[16] Shadden, S. C.; Lekien, F.; Marsden, J. E., Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212, 3-4, 271-304 (2005) · Zbl 1161.76487
[17] Farazmand, M.; Haller, G., Computing Lagrangian coherent structures from their variational theory, Chaos, 22, 1, Article 013128 pp. (2012) · Zbl 1331.37128
[18] Onu, K.; Huhn, F.; Haller, G., LCS tool: A computational platform for Lagrangian coherent structures, J. Comput. Sci., 7, 26-36 (2015)
[19] Haller, G.; Hadjighasem, A.; Farazmand, M.; Huhn, F., Defining coherent vortices objectively from the vorticity, J. Fluid Mech., 795, 136-173 (2016) · Zbl 1359.76096
[20] Mancho, A. M.; Wiggins, S.; Curbelo, J.; Mendoza, C., Lagrangian descriptors: A method for revealing phase space structures of general time dependent dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 18, 12, 3530-3557 (2013) · Zbl 1344.37031
[21] Balasuriya, S., Stochastic Sensitivity: A Computable Lagrangian Uncertainty Measure for Unsteady Flows, SIAM Rev., 62, 4, 781-816 (2020) · Zbl 1459.76108
[22] Balasuriya, S., Uncertainty in finite-time Lyapunov exponent computations, J. Comput. Dyn., 7, 2, 313-337 (2020) · Zbl 1450.37077
[23] Froyland, G.; Santitissadeekorn, N.; Monahan, A., Transport in time-dependent dynamical systems: Finite-time coherent sets, Chaos, 20, 4, Article 043116 pp. (2010) · Zbl 1311.37008
[24] Froyland, G., Dynamic isoperimetry and the geometry of Lagrangian coherent structures, Nonlinearity, 28, 10, 3587-3622 (2015) · Zbl 1352.37063
[25] Froyland, G.; Kwok, E., A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds, J. Nonlinear Sci., 30, 1, 1889-1971 (2017) · Zbl 1477.37092
[26] Froyland, G.; Padberg-Gehle, K., A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data, Chaos, 25, 8, Article 087406 pp. (2015) · Zbl 1374.37114
[27] Schlueter-Kuck, K. L.; Dabiri, J. O., Coherent structure colouring: identification of coherent structures from sparse data using graph theory, J. Fluid Mech., 811, 468-486 (2017) · Zbl 1383.76372
[28] Guo, H.; He, W.; Peterka, T.; Shen, H.-W.; Collis, S.; Helmus, J., Finite-Time Lyapunov Exponents and Lagrangian Coherent Structures in Uncertain Unsteady Flows, IEEE Trans. Vis. Comput. Graphics, 22, 6, 1672-1682 (2016)
[29] Balibrea-Iniesta, F.; Lopesino, C.; Wiggins, S.; Mancho, A. M., Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems, Int. J. Bifurcation Chaos, 26, 13, Article 1630036 pp. (2016) · Zbl 1354.37055
[30] BorzorgMagham, A.; Ross, S.; Schmale, D., Real-time prediction of atmospheric Lagrangian coherent structures based on forecast data: An application and error analysis, Physica D, 258, 47-60 (2013)
[31] Lermusiaux, P., Uncertainty estimation and prediction for interdisciplinary ocean dynamics, J. Comput. Phys., 217, 176-199 (2006) · Zbl 1146.86002
[32] Olcay, A.; Pottebaum, T.; Krueger, P., Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors, Chaos, 20, Article 017506 pp. (2010) · Zbl 1311.76035
[33] Garaboa-Paz, D.; Eiras-Barca, J.; Pérez-Muñuzuri, V., Climatology of Lyapunov exponents: the link between atmospheric rivers and large-scale mixing variability, Earth Syst. Dyn., 8, 865-873 (2017)
[34] Rockwood, M.; Huang, Y.; Green, M., Tracking coherent structures in massively-separated and turbulent flows, Phys. Rev. Fluids, 3, 1, Article 014702 pp. (2018)
[35] Leclair, M.; Lowe, R.; Zhang, Z.; Ivey, G.; Peacock, T., Uncovering Fine-Scale Wave-Driven Transport Features in a Fringing Coral Reef System via Lagrangian Coherent Structures, Fluids, 5, 4, 190 (2020)
[36] Lin, H.; Xiang, Y.; Qin, S.; Xu, H.; Liu, H., Lagrangian analysis of the fluid transport induced by the interaction of two co-axial co-rotating vortex rings, J. Hydrodyn., 32, 6, 1080-1090 (2020)
[37] Suara, K.; Khanarmuei, M.; Ghosh, A.; Yu, Y.; Zhang, H.; Soomere, T.; Brown, R. J., Material and debris transport patterns in Moreton Bay, Australia: The influence of Lagrangian coherent structures, Sci. Total Environ., 721, 3, Article 137715 pp. (2020)
[38] Teeraratkul, C.; Irwin, Z.; Shadden, S. C.; Mukherjee, D., Computational investigation of blood flow and flow-mediated transport in arterial thrombus neighborhood, Biomech. Model. Mechanobiol., 20, 2, 701-715 (2021)
[39] Haller, G., A variational theory of hyperbolic Lagrangian coherent structures, Physica D, 240, 7, 574-598 (2011) · Zbl 1214.37056
[40] García-Sánchez, G.; Mancho, A. M.; Wiggins, S., A bridge between invariant dynamical structures and uncertainty quantification, Commun. Nonlinear Sci. Numer. Simul., 104, Article 106016 pp. (2022) · Zbl 1483.37114
[41] Froyland, G., An analytic framework for identifying finite-time coherent sets in time-dependent dynamical systems, Physica D, 250, 1-19 (2013) · Zbl 1355.37013
[42] Bezdek, J. C.; Ehrlich, R.; Full, W., FCM: The fuzzy c-means clustering algorithm, Comput. Geosci., 10, 2-3, 191-203 (1984)
[43] Bezdek, J. C.; Hathaway, R. J.; Sabin, M. J.; Tucker, W. T., Convergence theory for fuzzy c-means: Counterexamples and repairs, IEEE Trans. Syst. Man Cybern., 17, 5, 873-877 (1987) · Zbl 0653.68091
[44] Lesieur, M.; Staquet, C.; Le Roy, P.; Comte, P., The mixing layer and its coherence examined from the point of view of two-dimensional turbulence, J. Fluid Mech., 192, 511-534 (1988)
[45] Metcalfe, R. W.; Orszag, S. A.; Brachet, M. E.; Menon, S.; Riley, J. J., Secondary instability of a temporally growing mixing layer, J. Fluid Mech., 184, 207-243 (1987) · Zbl 0638.76060
[46] Lee, H. G.; Kim, J., Two-dimensional Kelvin-Helmholtz instabilities of multi-component fluids, Eur. J. Mech. B Fluids, 49, A, 77-88 (2015) · Zbl 1408.76143
[47] Schroeder, P. W.; John, V.; Lederer, P. L.; Lehrenfeld, C.; Lube, G.; Schöberl, J., On reference solutions and the sensitivity of the 2D Kelvin-Helmholtz instability problem, Comput. Math. Appl., 77, 4, 1010-1028 (2019) · Zbl 1442.76050
[48] Mattner, T. W., Large-eddy simulations of turbulent mixing layers using the stretched-vortex model, J. Fluid Mech., 671, 507-534 (2011) · Zbl 1225.76154
[49] Liu, Y.; Wilson, C.; Green, M. A.; Hughes, C. W., Gulf stream transport and mixing processes via coherent structure dynamics, J. Geophys. Res.: Oceans, 123, 4, 3014-3037 (2018)
[50] Froyland, G.; Rock, C. P.; Sakellariou, K., Sparse eigenbasis approximation: Multiple feature extraction across spatiotemporal scales with application to coherent set identification, Commun. Nonlinear Sci. Numer. Simul., 77, 8, 81-107 (2019) · Zbl 1541.62147
[51] Balasuriya, S.; Kalampattel, R.; Ouellette, N., Hyperbolic neighbourhoods as organizers of finite-time exponential stretching, J. Fluid Mech., 807, 509-545 (2016) · Zbl 1383.37025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.