×

The origins of chaos in a modified Van der Pol oscillator. (English) Zbl 0726.58033

Let the system \[ \begin{aligned} dx/dt&=\rho x-\omega y+P(x,y,z;\mu) \\ dy/dt&=\omega x+\rho y+Q(x,y,z;\mu), \\ dz/dt&=\lambda z+R(x,y,z;\mu)\end{aligned}\tag{1} \] where \(\rho,\lambda >0\) and P, Q, R are analytic functions and \(\mu\) is a real parameter, possess a nontrivial solution \(\Gamma_ 0\) whose positive and negative limit sets consist solely of the origin. L. P. Shil’nikov [Sov. Math. Dokl. 6, 163-166 (1965); translation from Dokl. Akad. Nauk SSSR 160, 558-561 (1965; Zbl 0136.082) and Mat. Sb., n. Ser. 61(103), 443-466 (1963; Zbl 0121.075)] proved that every neighborhood of \(\Gamma_ 0\) possesses a denumerable collection of periodic solutions. The chaotic behaviour of the dynamical system of the type (1) is said to be chaotic in the sense of Shil’nikov. Namely, there is a homoclinic orbit at the origin and a “horseshoe” is embedded in a neighborhood of the homoclinic orbit. Hence there is a positively and negatively invariant Cantor set \(\Lambda\) containing: (i) infinitely many saddle-type (unstable) periodic orbits of arbitrary long periods; (ii) uncountably many bounded non-periodic orbits; (iii) a dense orbit. Moreover, the “horseshoe” persists under perturbation.
An oscillator in which chaos is conjectured to arise through a Shil’nikov mechanism has been studied by T. Matsumoto et. al. [T. Matsumoto, L. O. Chua, and K. Ayaki, IEEE Trans. Circuits Syst. CAS-35, No.7, 909-925 (1988; Zbl 0661.58019) and T. Matsumoto, L. O. Chua and M. Komuro, IEEE Trans. Circuits Syst. CAS-32, 797-818 (1985; Zbl 0578.94023)].
The authors of the paper under review carry out the investigation of chaotic behaviour arising through a Shil’nikov mechanism in modified Van der Pol oscillator. Their experimental results consist of a survey of the qualitative changes in the solution of the system describing Van der Pol oscillator, as a function of the control parameters. They find that the loci meet a codimension-2 point where lines of Hopf bifurcation intersect a locus of steady state bifurcations. The production of chaos then discussed in terms of finite-dimensional dynamical systems which are associated with such points. In particular, they identify a Takens- Bogdanov point and its associated line of homoclinic bifurcation.
Using the measured eigenvalue ratios, the Shil’nikov theory predicts a large, possibly infinite, number of coexisting attractors and a complex sequence of bifurcation, leading to chaos, as control parameters are varied. The authors’ experiments confirm this prediction by showing the existence of multiple coexisting states.
Reviewer: I.E.Tralle (Minsk)

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37G99 Local and nonlocal bifurcation theory for dynamical systems
70K50 Bifurcations and instability for nonlinear problems in mechanics
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
34D30 Structural stability and analogous concepts of solutions to ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
58Z05 Applications of global analysis to the sciences
Full Text: DOI

References:

[1] Silnikov, L. P., Sov. Math. Dokl., 6, 163 (1965)
[2] Glendinning, P. A.; Sparrow, C. T., J. Stat. Phys., 35, 645 (1984) · Zbl 0588.58041
[3] Gaspard, P.; Kapral, R.; Nicolis, G., J. Stat. Phys., 35, 697 (1984) · Zbl 0588.58055
[4] Glendinning, P. A., Phys. Lett. A, 103, 163 (1984)
[5] Arneodo, A.; Coullet, P. H.; Spiegel, E. A.; Tresser, C., Physica D, 14, 327 (1985) · Zbl 0595.58030
[6] Matsumoto, T.; Chua, L. O.; Komuro, M., IEEE Trans. Circuits Systems CAS-32, 798 (1985)
[7] IEEE Trans. Circuits Systems, 35, 7 (1988)
[8] Van der Pol, B.; Van der Mark, J., Nature, 120, 363 (1927)
[9] Shinriki, M.; Yamomoto, M.; Mori, S., (Proc. IEEE, 69 (1981)), 394
[10] Freire, E.; Franquelo, L. G.; Aracil, J., IEEE Trans. Circuits Systems CAS-31, 237 (1984)
[11] Broomhead, D. S.; King, G. P., Physica D, 20, 217 (1986) · Zbl 0603.58040
[12] Takens, F., (Rand, D. A.; Young, L.-S., Lecture Notes in Mathematics (1981), Springer: Springer Berlin), 366, No. 898
[13] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Phys. Rev. Lett., 45, 712 (1980)
[14] Golubitsky, M.; Langford, W. F., J. Diff. Eqs., 41, 375 (1981) · Zbl 0442.58020
[15] Gray, B. F.; Jones, J. C., Combustion Flame, 57, 3 (1984)
[16] Price, T.; Mullin, T., Physica D, 48, 29 (1991) · Zbl 0717.58035
[17] Takens, F., Publ. Math. IHES, 43, 47 (1973) · Zbl 0279.58009
[18] Bogdanov, R. I., Funct. Anal. Appl., 9, 144 (1975)
[19] Guckenheimer, J.; Holmes, P., Nonlinear Oscillators, Dynamical Systems, and Bifurcations of Vector Fields (1983), Springer: Springer Berlin · Zbl 0515.34001
[20] Broomhead, D. S.; Jones, R.; King, G. P., J. Phys. A, 20, L563 (1987) · Zbl 0644.58030
[21] Broomhead, D. S.; Jones, R., (Proc. R. Soc. London Ser. A, 423 (1989)), 103 · Zbl 0748.58018
[22] Broomhead, D. S.; King, G. P., (Sarkar, S., Nonlinear Phenomena and Chaos (1986), Adam Hilger: Adam Hilger Bristol)
[23] Broomhead, D. S.; Indik, R.; Newell, A. C.; Rand, D. A., Nonlinearity (1990), submitted for publication
[24] Penrose, R., (Proc. Camb. Phil. Soc., 51 (1955)), 406 · Zbl 0065.24603
[25] Stewart, G. W., (Introduction to Matrix Computations (1973), Academic Press: Academic Press New York), 390 · Zbl 0302.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.