×

An alternative method for the study of impulsive differential equations of fractional orders in a Banach space. (English) Zbl 1295.34009

Summary: This paper is concerned with the existence, uniqueness, and stability of the solution of some impulsive fractional problem in a Banach space subjected to a nonlocal condition. Meanwhile, we give a new concept of a solution to impulsive fractional equations of multiorders. The derived results are based on Banach’s contraction theorem as well as Schaefer’s fixed point theorem.

MSC:

34A08 Fractional ordinary differential equations
34G20 Nonlinear differential equations in abstract spaces
34B37 Boundary value problems with impulses for ordinary differential equations
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
47N20 Applications of operator theory to differential and integral equations

References:

[1] W. M. Ahmad and R. El-Khazali, “Fractional-order dynamical models of love,” Chaos, Solitons and Fractals, vol. 33, no. 4, pp. 1367-1375, 2007. · Zbl 1133.91539 · doi:10.1016/j.chaos.2006.01.098
[2] B. Bonilla, M. Rivero, L. Rodríguez-Germá, and J. J. Trujillo, “Fractional differential equations as alternative models to nonlinear differential equations,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 79-88, 2007. · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[3] K. Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[4] E. Hernández, D. O’Regan, and K. Balachandran, “On recent developments in the theory of abstract differential equations with fractional derivatives,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 73, no. 10, pp. 3462-3471, 2010. · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[5] V. Lakshmikantham, “Theory of fractional functional differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 69, no. 10, pp. 3337-3343, 2008. · Zbl 1162.34344 · doi:10.1016/j.na.2007.09.025
[6] V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. · Zbl 0719.34002
[7] V. Lakshmikantham, S. Leela, and D. J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Scientific, Cambridge, UK, 2009. · Zbl 1188.37002
[8] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Germany, 2011. · doi:10.1007/978-3-642-14003-7
[9] M. Benchohra and B. A. Slimani, “Existence and uniqueness of solutions to impulsive fractional differential equations,” Electronic Journal of Differential Equations, vol. 2009, article 10, 11 pages, 2009. · Zbl 1178.34004
[10] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[11] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[12] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science, Longhorne, Pa, USA, 1993. · Zbl 0818.26003
[13] K. Balachandran, S. Kiruthika, and J. J. Trujillo, “Remark on the existence results for fractional impulsive integrodifferential equations in Banach spaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2244-2247, 2012. · Zbl 1256.34065 · doi:10.1016/j.cnsns.2011.10.009
[14] K. Balachandran, S. Kiruthika, and J. J. Trujillo, “Existence results for fractional impulsive integrodifferential equations in Banach spaces,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 4, pp. 1970-1977, 2011. · Zbl 1221.34215 · doi:10.1016/j.cnsns.2010.08.005
[15] O. K. Jaradat, A. Al-Omari, and S. Momani, “Existence of the mild solution for fractional semilinear initial value problems,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 69, no. 9, pp. 3153-3159, 2008. · Zbl 1160.34300 · doi:10.1016/j.na.2007.09.008
[16] G. M. Mophou and G. M. N’Guérékata, “Existence of the mild solution for some fractional differential equations with nonlocal conditions,” Semigroup Forum, vol. 79, no. 2, pp. 315-322, 2009. · Zbl 1180.34006 · doi:10.1007/s00233-008-9117-x
[17] G. M. N’Guérékata, “A Cauchy problem for some fractional abstract differential equation with non local conditions,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 70, no. 5, pp. 1873-1876, 2009. · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[18] M. Fe\vckan, Y. Zhou, and J. Wang, “On the concept and existence of solution for impulsive fractional differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 3050-3060, 2012. · Zbl 1252.35277 · doi:10.1016/j.cnsns.2011.11.017
[19] L. Mahto, S. Abbas, and A. Favini, “Analysis of Caputo impulsive fractional order differential equations,” International Journal of Differential Equations, vol. 2013, Article ID 704547, 11 pages, 2013. · Zbl 1275.34010 · doi:10.1155/2013/704547
[20] B. Nagy and F. Riesz, Functional Analysis, Blackie & Son, London, UK, 1956. · Zbl 0070.10902
[21] W. Wei, X. Xiang, and Y. Peng, “Nonlinear impulsive integro-differential equations of mixed type and optimal controls,” Optimization, vol. 55, no. 1-2, pp. 141-156, 2006. · Zbl 1101.45002 · doi:10.1080/02331930500530401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.