×

On a new class of \(\Phi\)-Caputo-type fractional differential Langevin equations involving the \(p\)-Laplacian operator. (English) Zbl 07901394

Summary: This paper aims to investigate the existence result for a new class of \(\Phi\)-Caputo-type fractional differential Langevin equation involving the \(p\)-Laplacian operator. We develop these result with the help of the theory of \(p\)-Laplacian operator, and by making use of some basic proprieties of fractional calculus. By applying Schaefer’s fixed point theorem, we established the existence result. As application, we give an example to demonstrate our theoretical result.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
34B08 Parameter dependent boundary value problems for ordinary differential equations
47H10 Fixed-point theorems
Full Text: DOI

References:

[1] Gaul, L.; Klein, P.; Kemple, S., Damping description involving fractional operators, Mech. Syst. Signal Process., 5, 81-88, 1991 · doi:10.1016/0888-3270(91)90016-X
[2] Liu, X.; Jia, M., The method of lower and upper solutions for the general boundary value problems of fractional differential equations with \(p\)-Laplacian, Adv. Differ. Equ., 2018, 1-15, 2018 · Zbl 1445.34019
[3] Mazón, JM; Rossi, JD; Toledo, J., Fractional \(p\)-Laplacian evolution equations, J. de Math. Pures et Appliquées, 105, 810-844, 2016 · Zbl 1338.45009 · doi:10.1016/j.matpur.2016.02.004
[4] Asawasamrit, S.; Kijjathanakorn, A.; Ntouya, SK; Tariboon, J., Nonlocal boundary value problems for Hilfer fractional differential equations, B. Korean Math. Soc., 55, 1639-1657, 2018 · Zbl 1408.34004
[5] Liu, ZH; Sun, JH, Nonlinear boundary value problems of fractional differential systems, Comput. Math. Appl., 64, 463-475, 2012 · Zbl 1252.34006 · doi:10.1016/j.camwa.2011.12.020
[6] Liu, X.; Jia, M.; Xiang, X., On the solvability of a fractional differential equation model involving the \(p\)-Laplacian operator, Comput. Math. Appl., 64, 3267-3275, 2012 · Zbl 1268.34020 · doi:10.1016/j.camwa.2012.03.001
[7] Mukherjee, T.; Sreenadh, K., On Dirichlet problem for fractional p-Laplacian with singular non-linearity, Adv. Nonlinear Anal., 8, 52-72, 2019 · Zbl 1418.35365 · doi:10.1515/anona-2016-0100
[8] Diethelm, K.: The Analysis of Fractional Differential Equations. In: Lecture Notes in Mathematics, Springer, New York. (2010) · Zbl 1215.34001
[9] Su, Y.; Li, Q.; Liu, X., Existence criteria for positive solutions of \(p\)-Laplacian fractional differential equations with derivative terms, Adv. Differ. Equ., 2013, 119, 2013 · Zbl 1380.34022 · doi:10.1186/1687-1847-2013-119
[10] Xie, J.; Duan, L., Existence of solutions for fractional differential equations with \(p\)-Laplacian operator and integral boundary conditions, J. Funct. Spaces., 2020, 1-7, 2020 · Zbl 1444.35083
[11] Leibenson, LS, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk Kirg. SSSR., 9, 7-10, 1983
[12] Metzler, R.; Klafter, J., Boundary value problems for fractional diffusione quations, Phys. A, 278, 107-125, 2000 · doi:10.1016/S0378-4371(99)00503-8
[13] Khan, A.; Syam, MI; Zada, A.; Khan, H., Stability analysis of nonlinear fractional differential equations with Caputo and Riemann-Liouville derivatives, Eur. Phys. J. Plus, 133, 1-9, 2018 · doi:10.1140/epjp/i2018-12119-6
[14] Mainardi, F.: Fractional diffusive waves in viscoelastic solids. In: Wegner, J.L., Norwood, F.R. (eds.), Nonlinear Waves in Solids, Fairfield. (1995)
[15] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations, 2006, Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[16] Wu, J.; Zhang, X.; Liu, L.; Wu, Y.; Cui, Y., The convergence analysis and error estimation for unique solution of a \(p\)-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound Value Probl., 2018, 1-15, 2018 · Zbl 1499.34113 · doi:10.1186/s13661-018-1003-1
[17] Hilal, K.; Kajouni, A.; Lmou, H., Boundary value problem for the Langevin equation and inclusion with the Hilfer fractional derivative, Int. J. Differ. Equ., 2022, 3386198, 2022 · Zbl 1497.34009
[18] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York. (1993) · Zbl 0789.26002
[19] Lmou, H.; Hilal, K.; Kajouni, A., A new result for \(\psi \)-Hilfer fractional pantograph-type Langevin equation and inclusions, J. Math., 2022, 2441628, 2022 · doi:10.1155/2022/2441628
[20] Chen, T.; Liu, W., An anti-periodic boundary value problem for the fractional differential equation with a \(p\)-Laplacian operator, Appl. Math. Lett., 25, 1671-1675, 2012 · Zbl 1248.35219 · doi:10.1016/j.aml.2012.01.035
[21] Abdo, M.S., Panchal, S.K., Saeed, A.M. : Fractional Boundary Value Problem with \(\psi \)-Caputo Fractional Derivative. In: Proc. Indian Acad. Sci. (Math. Sci). pp. 129-165 (2019) · Zbl 1426.34003
[22] Almeida, R.; Malinowska, AB; Monteiro, MTT, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Meth. Appl. Sci., 41, 336-352, 2018 · Zbl 1384.34010 · doi:10.1002/mma.4617
[23] Samet, B.; Aydi, H., Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving \(\psi \)-Caputo fractional derivative, J. Inequal. Appl., 2018, 1, 1-11, 2018 · Zbl 1498.34041 · doi:10.1186/s13660-018-1850-4
[24] Almeida, R., Jleli, M., Samet, B.: A numerical study of fractional relaxation-oscillation equations involving \(\psi \)-Caputo fractional derivative. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matem´aticas. 113(3), 1873-1891 (2019) · Zbl 1418.34007
[25] Schaefer, H., Uber die Methode der a priori-Schranken, Math. Ann., 129, 415-416, 1955 · Zbl 0064.35703 · doi:10.1007/BF01362380
[26] Sun, JX, Nonlinear Functional Analysis and its Application, 2008, Beijing: Science Press, Beijing
[27] Lmou, H.; Hilal, K.; Kajouni, A., On a class of fractional Langevin inclusion with multi-point boundary conditions, Boletim da Sociedade Paranaense de Matemática., 41, 1-13, 2023 · Zbl 07805670 · doi:10.5269/bspm.62725
[28] Hilal, K.; Kajouni, A.; Lmou, H., Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions, filomat., 37, 1241-1259, 2023 · doi:10.2298/FIL2304241H
[29] Bedi, P.; Kumar, A.; Khan, A., Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives, Chaos Solitons Fractals, 150, 111-153, 2021 · Zbl 1498.34018 · doi:10.1016/j.chaos.2021.111153
[30] Khan, A.; Khan, H.; Gómez-Aguilar, JF; Abdeljawad, T., Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Solitons Fractals, 127, 422-427, 2019 · Zbl 1448.34046 · doi:10.1016/j.chaos.2019.07.026
[31] Khan, H.; Tunc, C.; Chen, W.; Khan, A., Existence theorems and Hyers-Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator, J. Appl. Anal. Comput., 8, 4, 1211-1226, 2018 · Zbl 1461.34009
[32] Khan, H.; Tunç, C.; Khan, A., Stability results and existence theorems for nonlinear delay-fractional differential equations with \(\varphi^*_p \)-operator, J. Appl. Anal. Comput., 10, 2, 584-597, 2020 · Zbl 1464.34103
[33] Khan, A.; Alshehri, HM; Gómez-Aguilar, JF; Khan, ZA; Fernández-Anaya, G., A predator-prey model involving variable-order fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equ., 2021, 1-18, 2021 · Zbl 1494.92100
[34] Begum, R.; Tunç, O.; Khan, H.; Gulzar, H.; Khan, A., A fractional order Zika virus model with Mittag-Leffler kernel, Chaos Solitons Fractals, 146, 2021 · doi:10.1016/j.chaos.2021.110898
[35] Tajadodi, H.; Khan, A.; Francisco Gómez-Aguilar, J.; Khan, H., Optimal control problems with Atangana-Baleanu fractional derivative, Optimal Control Appl. Methods, 42, 1, 96-109, 2021 · Zbl 1468.49022 · doi:10.1002/oca.2664
[36] Bedi, P.; Kumar, A.; Abdeljawad, T.; Khan, ZA; Khan, A., Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators, Adv. Differ. Equ., 2020, 1-15, 2020 · Zbl 1486.34018 · doi:10.1186/s13662-020-03074-1
[37] Devi, A.; Kumar, A.; Baleanu, D.; Khan, A., On stability analysis and existence of positive solutions for a general non-linear fractional differential equations, Adv. Differ. Equ., 2020, 1-16, 2020 · Zbl 1485.34033 · doi:10.1186/s13662-020-02729-3
[38] Devi, A.; Kumar, A.; Abdeljawad, T.; Khan, A., Stability analysis of solutions and existence theory of fractional Lagevin equation, Alex. Eng. J., 60, 4, 3641-3647, 2021 · doi:10.1016/j.aej.2021.02.011
[39] Zhou, H.; Yang, L.; Agarwal, P., Solvability for fractional p-Laplacian differential equations with multipoint boundary conditions at resonance on infinite interval, J. Appl. Math. Comput., 53, 51-76, 2017 · Zbl 1365.34024 · doi:10.1007/s12190-015-0957-8
[40] Agarwal, P.; Berdyshev, A.; Karimov, E., Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative, Results Math., 71, 3, 1235-1257, 2017 · Zbl 1375.35282 · doi:10.1007/s00025-016-0620-1
[41] Agarwal, P.; Jain, S.; Mansour, T., Further extended Caputo fractional derivative operator and its applications, Russ. J. Math. Phys., 24, 415-425, 2017 · Zbl 1384.26026 · doi:10.1134/S106192081704001X
[42] Agarwal, P.; Choi, J., Fractional calculus operators and their image formulas, J. Korean Math. Soc., 53, 5, 1183-1210, 2016 · Zbl 1347.26014 · doi:10.4134/JKMS.j150458
[43] Salahshour, S.; Ahmadian, A.; Senu, N.; Baleanu, D.; Agarwal, P., On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem, Entropy, 17, 2, 885-902, 2015 · Zbl 1338.34025 · doi:10.3390/e17020885
[44] Budak, H., Agarwal, P.: On Hermite-Hadamard-type inequalities for coordinated convex mappings utilizing generalized fractional integrals. In: Fractional Calculus: ICFDA 2018, Amman, Jordan, July 16-18, pp. 227-249. Springer Singapore (2019)
[45] Lmou, H.; Hilal, K.; Kajouni, A., Topological degree method for a \(\Psi \)-Hilfer fractional differential equation involving two different fractional order, J. Math. Sci., 280, 1-12, 2023
[46] Bazhlekova, E.G.: Fractional Evolution Equations in Banach Spaces. (2001) · Zbl 0989.34002
[47] Kostic, M.: Abstract Volterra integro-differential equations. CRC Press. (2015) · Zbl 1318.45004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.