×

Efficient computation of multiscale entropy over short biomedical time series based on linear state-space models. (English) Zbl 1380.93228

Summary: The most common approach to assess the dynamical complexity of a time series across multiple temporal scales makes use of the MultiScale entropy (MSE) and Refined MSE (RMSE) measures. In spite of their popularity, MSE and RMSE lack an analytical framework allowing their calculation for known dynamic processes and cannot be reliably computed over short time series. To overcome these limitations, we propose a method to assess RMSE for AutoRegressive (AR) stochastic processes. The method makes use of linear State-Space (SS) models to provide the multiscale parametric representation of an AR process observed at different time scales and exploits the SS parameters to quantify analytically the complexity of the process. The resulting linear MSE (LMSE) measure is first tested in simulations, both theoretically to relate the multiscale complexity of AR processes to their dynamical properties and over short process realizations to assess its computational reliability in comparison with RMSE. Then, it is applied to the time series of heart period, arterial pressure, and respiration measured for healthy subjects monitored in resting conditions and during physiological stress. This application to short-term cardiovascular variability documents that LMSE can describe better than RMSE the activity of physiological mechanisms producing biological oscillations at different temporal scales.

MSC:

93E03 Stochastic systems in control theory (general)
93C70 Time-scale analysis and singular perturbations in control/observation systems
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] Burggren, W. W.; Monticino, M. G., Assessing physiological complexity, Journal of Experimental Biology, 208, 17, 3221-3232 (2005) · doi:10.1242/jeb.01762
[2] Bashan, A.; Bartsch, R. P.; Kantelhardt, J. W.; Havlin, S.; Ivanov, P. C., Network physiology reveals relations between network topology and physiological function, Nature Communications, 3, article no. 702 (2012) · doi:10.1038/ncomms1705
[3] Cohen, M. A.; Taylor, J. A., Short-term cardiovascular oscillations in man: Measuring and modelling the physiologies, The Journal of Physiology, 542, 3, 669-683 (2002) · doi:10.1113/jphysiol.2002.017483
[4] Porta, A.; Rienzo, M. D.; Wessel, N.; Kurths, J., Addressing the complexity of cardiovascular regulation, Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences, 367, 1892, 1215-1218 (2009) · doi:10.1098/rsta.2008.0292
[5] Costa, M.; Goldberger, A. L.; Peng, C.-K., Multiscale entropy analysis of complex physiologic time series, Physical Review Letters, 89, 6, 68102 (2002) · doi:10.1103/PhysRevLett.89.068102
[6] Humeau-Heurtier, A., The multiscale entropy algorithm and its variants: A review, Entropy, 17, 5, 3110-3123 (2015) · doi:10.3390/e17053110
[7] Humeau-Heurtier, A.; Mahé, G.; Durand, S.; Abraham, P., Multiscale entropy study of medical laser speckle contrast images, IEEE Transactions on Biomedical Engineering, 60, 3, 872-879 (2013) · doi:10.1109/TBME.2012.2208642
[8] Costa, M.; Goldberger, A. L.; Peng, C.-K., Multiscale entropy analysis of biological signals, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 71, 2 (2005) · doi:10.1103/PhysRevE.71.021906
[9] Courtiol, J.; Perdikis, D.; Petkoski, S.; Müller, V.; Huys, R.; Sleimen-Malkoun, R.; Jirsa, V. K., The multiscale entropy: Guidelines for use and interpretation in brain signal analysis, Journal of Neuroscience Methods, 273, 175-190 (2016) · doi:10.1016/j.jneumeth.2016.09.004
[10] Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M., Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy, Physiological Measurement, 27, 11, article 004, 1091 (2006) · doi:10.1088/0967-3334/27/11/004
[11] Valencia, J. F.; Porta, A.; Vallverdú, M.; Clarià, F.; Baranowski, R.; Orłowska-Baranowska, E.; Caminal, P., Refined multiscale entropy: application to 24-h holter recordings of heart period variability in healthy and aortic stenosis subjects, IEEE Transactions on Biomedical Engineering, 56, 9, 2202-2213 (2009) · doi:10.1109/TBME.2009.2021986
[12] Angelini, L.; Maestri, R.; Marinazzo, D.; Nitti, L.; Pellicoro, M.; Pinna, G. D.; Stramaglia, S.; Tupputi, S. A., Multiscale analysis of short term heart beat interval, arterial blood pressure, and instantaneous lung volume time series, Artificial Intelligence in Medicine, 41, 3, 237-250 (2007) · doi:10.1016/j.artmed.2007.07.012
[13] Richman, J. S.; Moorman, J. R., Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol, 278, 6, H2039-H2049 (2000)
[14] Nikulin, V. V.; Brismar, T., Comment on Multiscale Entropy Analysis of Complex Physiologic Time Series, Physical Review Letters, 92, 8, 89803 (2004)
[15] Chang, Y.-C.; Wu, H.-T.; Chen, H.-R.; Liu, A.-B.; Yeh, J.-J.; Lo, M.-T.; Tsao, J.-H.; Tang, C.-J.; Tsai, I.-T.; Sun, C.-K., Application of a modified entropy computational method in assessing the complexity of pulse wave velocity signals in healthy and diabetic subjects, Entropy, 16, 7, 4032-4043 (2014) · doi:10.3390/e16074032
[16] Wu, S.-D.; Wu, C.-W.; Lin, S.-G.; Wang, C.-C.; Lee, K.-Y., Time series analysis using composite multiscale entropy, Entropy, 15, 3, 1069-1084 (2013) · Zbl 1298.65020 · doi:10.3390/e15031069
[17] Malik, M.; Bigger, J.; Camm, A.; Kleiger, R., Heart rate variability. standards of measurement, physiological interpretation, and clinical use. task force of the european society of cardiology and the north american society of pacing and electrophysiology, European Heart Journal, 17, 354-381 (1996)
[18] Pomeranz, B., Assessment of autonomic function in humans by heart rate spectral analysis, American Journal of Physiology, 248, H151-H153 (1985)
[19] Akselrod, S.; Gordon, D.; Ubel, F. A.; Shannon, D. C.; Berger, A. C.; Cohen, R. J., Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control, Science, 213, 4504, 220-222 (1981) · doi:10.1126/science.6166045
[20] Barnett, L.; Seth, A. K., Granger causality for state-space models, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 91, 4 (2015) · doi:10.1103/PhysRevE.91.040101
[21] Faes, L.; Marinazzo, D.; Stramaglia, S., Multiscale information decomposition: exact computation for multivariate gaussian processes, Entropy, 19, 408 (2017)
[22] Porta, A.; De Maria, B.; Bari, V.; Marchi, A.; Faes, L., Are nonlinear model-free conditional entropy approaches for the assessment of cardiac control complexity superior to the linear model-based one?, IEEE Transactions on Biomedical Engineering, 64, 6, 1287-1296 (2017) · doi:10.1109/TBME.2016.2600160
[23] Faes, L.; Nollo, G.; Stramaglia, S.; Marinazzo, D., Multiscale Granger causality, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 96, 42150 (2017) · doi:10.1103/PhysRevE.96.042150
[24] Oppenheim, A. V.; Schafer, R. W.; Buck, J. R., Discrete Time Signal Processing, 1999 (1999) · Zbl 0994.94005
[25] Barrett, A. B.; Barnett, L.; Seth, A. K., Multivariate Granger causality and generalized variance, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 81, 4 (2010) · doi:10.1103/PhysRevE.81.041907
[26] Faes, L.; Porta, A.; Nollo, G., Information decomposition in bivariate systems: Theory and application to cardiorespiratory dynamics, Entropy, 17, 1, 277-303 (2015) · doi:10.3390/e17010277
[27] Kieffer, J., Elements of Information Theory (Thomas M. Cover and Joy A. Thomas), Society for Industrial and Applied Mathematics Review, 36, 3, 509-511 (1994)
[28] Barnett, L.; Barrett, A. B.; Seth, A. K., Granger causality and transfer entropy are equivalent for gaussian variables, Physical Review Letters, 103, 23 (2009) · doi:10.1103/PhysRevLett.103.238701
[29] Aoki, M.; Havenner, A., State space modeling of multiple time series, Econometric Reviews, 10, 1, 1-99 (1991) · Zbl 0733.62098 · doi:10.1080/07474939108800194
[30] Solo, V., State-space analysis of Granger-Geweke causality measures with application to fMRI, Neural Computation, 28 (2016) · Zbl 1414.92188 · doi:10.1162/NECO_a_00828
[31] Neath, A. A.; Cavanaugh, J. E., The Bayesian information criterion: Background, derivation, and applications, Wiley Interdisciplinary Reviews: Computational Statistics, 4, 2, 199-203 (2012) · doi:10.1002/wics.199
[32] Porta, A.; Bari, V.; Ranuzzi, G.; De Maria, B.; Baselli, G., Assessing multiscale complexity of short heart rate variability series through a model-based linear approach, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27, 9, 93901 (2017)
[33] Xiong, W.; Faes, L.; Ivanov, P. C., Entropy measures, entropy estimators, and their performance in quantifying complex dynamics: Effects of artifacts, nonstationarity, and long-range correlations, Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 95, 6, 62114 (2017) · doi:10.1103/PhysRevE.95.062114
[34] Yentes, J. M.; Hunt, N.; Schmid, K. K.; Kaipust, J. P.; McGrath, D.; Stergiou, N., The appropriate use of approximate entropy and sample entropy with short data sets, Annals of Biomedical Engineering, 41, 2, 349-365 (2013) · doi:10.1007/s10439-012-0668-3
[35] Javorka, M.; Krohova, J.; Czippelova, B.; Turianikova, Z.; Lazarova, Z.; Javorka, K.; Faes, L., Basic cardiovascular variability signals: mutual directed interactions explored in the information domain, Physiological Measurement, 38, 5, 877-894 (2017) · doi:10.1088/1361-6579/aa5b77
[36] Faes, L.; Porta, A.; Nollo, G.; Javorka, M., Information decomposition in multivariate systems: Definitions, implementation and application to cardiovascular networks, Entropy, 19, 1, article no. 5 (2017) · doi:10.3390/e19010005
[37] Faes, L.; Erla, S.; Nollo, G., Measuring connectivity in linear multivariate processes: Definitions, interpretation, and practical analysis, Computational and Mathematical Methods in Medicine, 2012 (2012) · Zbl 1244.62124 · doi:10.1155/2012/140513
[38] Porta, A.; Gnecchi-Ruscone, T.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N., Progressive decrease of heart period variability entropy-based complexity during graded head-up tilt, Journal of Applied Physiology, 103, 4, 1143-1149 (2007) · doi:10.1152/japplphysiol.00293.2007
[39] Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T., Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability, American Journal of Physiology-Heart and Circulatory Physiology, 293, 1, H702-H708 (2007) · doi:10.1152/ajpheart.00006.2007
[40] Visnovcova, Z.; Mestanik, M.; Javorka, M.; Mokra, D.; Gala, M.; Jurko, A.; Calkovska, A.; Tonhajzerova, I., Complexity and time asymmetry of heart rate variability are altered in acute mental stress, Physiological Measurement, 35, 7, 1319-1334 (2014) · doi:10.1088/0967-3334/35/7/1319
[41] Kuipers, N. T.; Sauder, C. L.; Carter, J. R.; Ray, C. A., Neurovascular responses to mental stress in the supine and upright postures, Journal of Applied Physiology, 104, 4, 1129-1136 (2008) · doi:10.1152/japplphysiol.01285.2007
[42] Lackner, H. K.; Papousek, I.; Batzel, J. J.; Roessler, A.; Scharfetter, H.; Hinghofer-Szalkay, H., Phase synchronization of hemodynamic variables and respiration during mental challenge, International Journal of Psychophysiology, 79, 3, 401-409 (2011) · doi:10.1016/j.ijpsycho.2011.01.001
[43] Grassmann, M.; Vlemincx, E.; Von Leupoldt, A.; Mittelstädt, J. M.; Van Den Bergh, O., Respiratory changes in response to cognitive load: A systematic review, Neural Plasticity, 2016 (2016) · doi:10.1155/2016/8146809
[44] Malliani, A., The pattern of sympathovagal balance explored in the frequency domain, News in Physiological Sciences, 14, 3, 111-117 (1999)
[45] Schulz, S., Cardiovascular and cardiorespiratory coupling analyses: a review, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (2013) · Zbl 1353.92055
[46] Ling, S.; Li, W. K., On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity, Journal of the American Statistical Association, 92, 439, 1184-1194 (1997) · Zbl 1067.62572 · doi:10.2307/2965585
[47] Stanley, H. E.; Buldyrev, S. V.; Goldberger, A. L.; Hausdorff, J. M.; Havlin, S.; Mietus, J.; Peng, C.-K.; Sciortino, F.; Simons, M., Fractal landscapes in biological systems: Long-range correlations in DNA and interbeat heart intervals, Physica A: Statistical Mechanics and its Applications, 191, 1-4, 1-12 (1992) · doi:10.1016/0378-4371(92)90497-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.