×

Micromechanics-informed parametric deep material network for physics behavior prediction of heterogeneous materials with a varying morphology. (English) Zbl 1536.74159

Summary: Deep Material Network (DMN) has recently emerged as a data-driven surrogate model for heterogeneous materials. Given a particular microstructural morphology, the effective linear and nonlinear behaviors can be successfully approximated by such physics-based neural-network like architecture. In this work, a novel micromechanics-informed parametric DMN (MIpDMN) architecture is proposed for multiscale materials with a varying microstructure characterized by several parameters. A single-layer feedforward neural network is used to account for the dependence of DMN fitting parameters on the microstructural ones. Micromechanical constraints are prescribed both on the architecture and the outputs of this new neural network. The proposed MIpDMN is also recast in a multiple physics setting, where physical properties other than the mechanical ones can also be predicted. In the numerical simulations conducted on three parameterized microstructures, MIpDMN demonstrates satisfying generalization capabilities when morphology varies. The effective behaviors of such parametric multiscale materials can thus be predicted and encoded by MIpDMN with high accuracy and efficiency.

MSC:

74M25 Micromechanics of solids
74E30 Composite and mixture properties

Software:

TensorFlow; PyTorch; Adam; SMT

References:

[1] Kanouté, P.; Boso, D. P.; Chaboche, J. L.; Schrefler, B. A., Multiscale methods for composites: A review. Arch. Comput. Methods Eng., 1, 31-75 (2009) · Zbl 1170.74304
[2] Matouš, K.; Geers, M. G.; Kouznetsova, V. G.; Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys., 192-220 (2017)
[3] Fish, J.; Wagner, G. J.; Keten, S., Mesoscopic and multiscale modelling in materials. Nature Mater., 6, 774-786 (2021)
[4] Tucker, C. L.; Liang, E., Stiffness predictions for unidirectional short-fiber composites: Review and evaluation. Compos. Sci. Technol., 5, 655-671 (1999)
[5] Pierard, O.; Friebel, C.; Doghri, I., Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Compos. Sci. Technol., 10-11, 1587-1603 (2004)
[6] Geers, M.; Kouznetsova, V.; Brekelmans, W., Multi-scale computational homogenization: Trends and challenges. J. Comput. Appl. Math., 7, 2175-2182 (2010) · Zbl 1402.74107
[7] Liu, Z.; Wu, C.; Koishi, M., A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput. Methods Appl. Mech. Engrg., 1138-1168 (2019) · Zbl 1440.74340
[8] Kumar, S.; Kochmann, D. M., What machine learning can do for computational solid mechanics, 275-285 · Zbl 1512.74101
[9] Liu, Z.; Wu, C., Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J. Mech. Phys. Solids, 20-46 (2019) · Zbl 1477.74006
[10] Gajek, S.; Schneider, M.; Böhlke, T., On the micromechanics of deep material networks. J. Mech. Phys. Solids (2020) · Zbl 1516.74006
[11] Gajek, S.; Schneider, M.; Böhlke, T., An FE-DMN method for the multiscale analysis of short fiber reinforced plastic components. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74089
[12] Gajek, S.; Schneider, M.; Böhlke, T., An FE-DMN method for the multiscale analysis of thermomechanical composites. Comput. Mech., 5, 1087-1113 (2022) · Zbl 1491.74094
[13] Wei, H.; Wu, C. T.; Hu, W.; Su, T.-H.; Oura, H.; Nishi, M.; Naito, T.; Chung, S.; Shen, L., LS-DYNA machine learning-based multiscale method for nonlinear modeling of short fiber-reinforced composites. J. Eng. Mech., 3 (2023)
[14] Liu, Z., Deep material network with cohesive layers: Multi-stage training and interfacial failure analysis. Comput. Methods Appl. Mech. Engrg. (2020) · Zbl 1436.74015
[15] Liu, Z., Cell division in deep material networks applied to multiscale strain localization modeling. Comput. Methods Appl. Mech. Engrg. (2021) · Zbl 1506.74236
[16] Dey, A. P.; Welschinger, F.; Schneider, M.; Gajek, S.; Böhlke, T., Training deep material networks to reproduce creep loading of short fiber-reinforced thermoplastics with an inelastically-informed strategy. Arch. Appl. Mech., 9, 2733-2755 (2022)
[17] Dey, A. P.; Welschinger, F.; Schneider, M.; Gajek, S.; Böhlke, T., Rapid inverse calibration of a multiscale model for the viscoplastic and creep behavior of short fiber-reinforced thermoplastics based on deep material networks. Int. J. Plast. (2023)
[18] Wu, L.; Adam, L.; Noels, L., Micro-mechanics and data-driven based reduced order models for multi-scale analyses of woven composites. Compos. Struct. (2021)
[19] Nguyen, V. D.; Noels, L., Micromechanics-based material networks revisited from the interaction viewpoint: Robust and efficient implementation for multi-phase composites. Eur. J. Mech. A Solids (2022) · Zbl 1507.74101
[20] Nguyen, V. D.; Noels, L., Interaction-based material network: A general framework for (porous) microstructured materials. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74260
[21] Halphen, B.; Nguyen, Q. S., Sur les matériaux standard généralisés. J. Méc., 1, 39-63 (1975) · Zbl 0308.73017
[22] Allaire, G., Shape Optimization By the Homogenization Method (2002), Springer: Springer New York · Zbl 0990.35001
[23] Milton, G. W., The Theory of Composites (2002), Cambridge University Press · Zbl 0993.74002
[24] Hashin, Z.; Shtrikman, S., On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids, 4, 335-342 (1962)
[25] Francfort, G. A.; Murat, F., Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal., 4, 307-334 (1986) · Zbl 0604.73013
[26] Liu, Z.; Wu, C. T.; Koishi, M., Transfer learning of deep material network for seamless structure-property predictions. Comput. Mech., 2, 451-465 (2019) · Zbl 1468.74087
[27] Huang, T.; Liu, Z.; Wu, C.; Chen, W., Microstructure-guided deep material network for rapid nonlinear material modeling and uncertainty quantification. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74256
[28] Advani, S. G.; Tucker, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol., 8, 751-784 (1987)
[29] Diebel, J., Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix, 15-16, 1-35 (2006)
[30] Ramière, I.; Helfer, T., Iterative residual-based vector methods to accelerate fixed point iterations. Comput. Math. Appl., 9, 2210-2226 (2015) · Zbl 1443.65004
[31] Rosen, B. W.; Hashin, Z., Effective thermal expansion coefficients and specific heats of composite materials. Internat. J. Engrg. Sci., 2, 157-173 (1970)
[32] Benveniste, Y.; Dvorak, G. J., On a correspondence between mechanical and thermal effects in two-phase composites, 65-81
[33] Gokhale, A.; Tewari, A.; Garmestani, H., Constraints on microstructural two-point correlation functions. Scr. Mater., 8, 989-993 (2005)
[34] Niezgoda, S. R.; Yabansu, Y. C.; Kalidindi, S. R., Understanding and visualizing microstructure and microstructure variance as a stochastic process. Acta Mater., 16, 6387-6400 (2011)
[35] Pathan, M. V.; Ponnusami, S. A.; Pathan, J.; Pitisongsawat, R.; Erice, B.; Petrinic, N.; Tagarielli, V. L., Predictions of the mechanical properties of unidirectional fibre composites by supervised machine learning. Sci. Rep., 1 (2019)
[36] Sengodan, G. A., Prediction of two-phase composite microstructure properties through deep learning of reduced dimensional structure-response data. Composites B (2021)
[37] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 686-707 (2019) · Zbl 1415.68175
[38] Bauer, J. K.; Böhlke, T., Variety of fiber orientation tensors. Math. Mech. Solids, 7, 1185-1211 (2021) · Zbl 07601704
[39] Müller, V.; Böhlke, T., Prediction of effective elastic properties of fiber reinforced composites using fiber orientation tensors. Compos. Sci. Technol., 36-45 (2016)
[40] Bauer, J. K.; Schneider, M.; Böhlke, T., On the phase space of fourth-order fiber-orientation tensors. J. Elasticity (2023) · Zbl 1524.74029
[41] Böhlke, T., Application of the maximum entropy method in texture analysis. Comput. Mater. Sci., 3-4, 276-283 (2005)
[42] Lee, T.; Leok, M.; McClamroch, N. H., Global symplectic uncertainty propagation on SO(3) · Zbl 1203.70044
[43] Mckay, M. D.; Beckman, R. J.; Conover, W. J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1, 55-61 (2000)
[44] Sobol’, I. M., On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys., 4, 86-112 (1967) · Zbl 0185.41103
[45] Henkes, A.; Wessels, H.; Mahnken, R., Physics informed neural networks for continuum micromechanics. Comput. Methods Appl. Mech. Engrg. (2022) · Zbl 1507.74478
[46] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai, J.; Chintala, S., PyTorch: An Imperative Style, High-Performance Deep Learning Library (2019), Curran Associates Inc.: Curran Associates Inc. Red Hook, NY, USA
[47] N.S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, P.T.P. Tang, On large-batch training for deep learning: Generalization gap and sharp minima, in: 5th International Conference on Learning Representations (ICLR 2017), 2017.
[48] Riedmiller, M.; Braun, H., A direct adaptive method for faster backpropagation learning: the RPROP algorithm
[49] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: 3rd International Conference on Learning Representations (ICLR 2015), 2015.
[50] C. Florescu, C. Igel, Resilient backpropagation (Rprop) for batch-learning in TensorFlow, in: 6th International Conference on Learning Representations (ICLR 2018), 2018.
[51] McLendon, R., Micromechanics Plugin for Abaqus (2017), https://www.linkedin.com/pulse/micromechanics-plugin-abaqus-ross-mclendon/, accessed: 2023-02-13
[52] Brown, L.; Long, A., Modeling the geometry of textile reinforcements for composites: TexGen, 237-265
[53] Bouhlel, M. A.; Hwang, J. T.; Bartoli, N.; Lafage, R.; Morlier, J.; Martins, J. R., A python surrogate modeling framework with derivatives. Adv. Eng. Softw. (2019)
[54] Liu, Z.; Fleming, M.; Liu, W. K., Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput. Methods Appl. Mech. Engrg., 547-577 (2018) · Zbl 1439.74063
[55] Bharali, R.; Larsson, F.; Jänicke, R., Computational homogenisation of phase-field fracture. Eur. J. Mech. A Solids (2021) · Zbl 1475.74105
[56] Doghri, I.; Adam, L.; Bilger, N., Mean-field homogenization of elasto-viscoplastic composites based on a general incrementally affine linearization method. Int. J. Plast., 2, 219-238 (2010) · Zbl 1426.74111
[57] Irons, B. M.; Tuck, R. C., A version of the Aitken accelerator for computer iteration. Internat. J. Numer. Methods Engrg., 3, 275-277 (1969) · Zbl 0256.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.