×

The new discontinuous Galerkin methods based numerical relativity program Nmesh. (English) Zbl 1517.83008

Summary: Interpreting gravitational wave observations and understanding the physics of astrophysical compact objects such as black holes or neutron stars requires accurate theoretical models. Here, we present a new numerical relativity computer program, called Nmesh, that has the design goal to become a next generation program for the simulation of challenging relativistic astrophysics problems such as binary black hole or neutron star mergers. In order to efficiently run on large supercomputers, Nmesh uses a discontinuous Galerkin method together with a domain decomposition and mesh refinement that parallelizes and scales well. In this work, we discuss the various numerical methods we use. We also present results of test problems such as the evolution of scalar waves, single black holes and neutron stars, as well as shock tubes. In addition, we introduce a new positivity limiter that allows us to stably evolve single neutron stars without an additional artificial atmosphere, or other more traditional limiters.

MSC:

83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
85A15 Galactic and stellar structure
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
68Q06 Networks and circuits as models of computation; circuit complexity

References:

[1] Abbott, B. P., GW170817: observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.161101
[2] Abbott, B. P., Gravitational waves and Gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A, Astrophys. J. Lett., 848, L13 (2017) · doi:10.3847/2041-8213/aa920c
[3] Coulter, D. A., Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source, Science, 358, 1556-8 (2017) · doi:10.1126/science.aap9811
[4] Abbott, B. P., GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev., X9 (2019) · doi:10.1103/PhysRevX.9.031040
[5] Abbott, R., GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X, 11 (2021) · doi:10.1103/PhysRevX.11.021053
[6] Abbott, R., Observation of gravitational waves from two neutron starblack hole coalescences, Astrophys. J. Lett., 915, L5 (2021) · doi:10.3847/2041-8213/ac082e
[7] Abbott, B. P., Multi-messenger observations of a binary neutron star merger, Astrophys. J., 848, L12 (2017) · doi:10.3847/2041-8213/aa91c9
[8] Abbott, B. P., A gravitational-wave standard siren measurement of the Hubble constant, Nature, 551, 85-88 (2017) · doi:10.1038/nature24471
[9] Radice, D.; Perego, A.; Zappa, F.; Bernuzzi, S., GW170817: joint constraint on the neutron star equation of state from multimessenger observations, Astrophys. J., 852, L29 (2018) · doi:10.3847/2041-8213/aaa402
[10] Most, E. R.; Weih, L. R.; Rezzolla, L.; Jürgen, S-B, New constraints on radii and tidal deformabilities of neutron stars from GW170817, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.261103
[11] Metzger, B. D., Kilonovae, Living Rev. Rel., 23, 1 (2020) · doi:10.1007/s41114-019-0024-0
[12] Tim Dietrich, M. W.; Coughlin, P. T H.; Pang, M. B.; Heinzel, J.; Issa, L.; Tews, I.; Antier, S., Multimessenger constraints on the neutron-star equation of state and the Hubble constant, Science, 370, 1450-3 (2020) · Zbl 1478.83007 · doi:10.1126/science.abb4317
[13] Blanchet, L., Gravitational radiation from post-Newtonian sources and inspiralling compact binaries, Living Rev. Rel., 17, 2 (2014) · Zbl 1316.83003 · doi:10.12942/lrr-2014-2
[14] Bernd Bruegmann, J. A.; Gonzalez, M. H.; Husa, S.; Sperhake, U.; Tichy, W., Calibration of moving puncture simulations, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.024027
[15] Thierfelder, M.; Bernuzzi, S.; Bernd, B., Numerical relativity simulations of binary neutron stars, Phys. Rev., D84 (2011) · doi:10.1103/PhysRevD.84.044012
[16] Dietrich, T.; Bernuzzi, S.; Ujevic, M.; Bernd, B., Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement, Phys. Rev., D91 (2015) · doi:10.1103/PhysRevD.91.124041
[17] Löffler, F., The einstein toolkit: a community computational infrastructure for relativistic astrophysics, Class. Quantum Grav., 29 (2012) · Zbl 1247.83003 · doi:10.1088/0264-9381/29/11/115001
[18] Haas, Ret al.2020The Einstein toolkit(available at: http://einsteintoolkit.org)
[19] Ruchlin, I.; Etienne, Z. B.; Baumgarte, T. W., SENR/NRPy+: numerical relativity in singular curvilinear coordinate systems, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.064036
[20] Kiuchi, K.; Kyohei, K.; Kyutoku, K.; Sekiguchi, Y.; Shibata, M., Sub-radian-accuracy gravitational waves from coalescing binary neutron stars II: systematic study on the equation of state, binary mass and mass ratio, Phys. Rev. D, 101 (2020) · doi:10.1103/PhysRevD.101.084006
[21] SpEC - Spectral Einstein code(available at: www.black-holes.org/SpEC.html)
[22] Boyle, M., The SXS Collaboration catalog of binary black hole simulations, Class. Quantum Grav., 36 (2019) · doi:10.1088/1361-6382/ab34e2
[23] Reitze, D., Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO, Bull. Am. Astron. Soc., 51, 035 (2019)
[24] Kawamura, S., Current status of space gravitational wave antenna DECIGO and B-DECIGO, PTEP, 2021, 05A105 (2021) · doi:10.1093/ptep/ptab019
[25] Punturo, M., The Einstein telescope: a third-generation gravitational wave observatory, Class. Quantum Grav., 27 (2010) · Zbl 1184.83017 · doi:10.1088/0264-9381/27/19/194002
[26] Adhikari, R. X., Astrophysical science metrics for next-generation gravitational-wave detectors, Class. Quantum Grav., 36 (2019) · doi:10.1088/1361-6382/ab3cff
[27] Amaro-Seoane, P., Laser interferometer space antenna (2017)
[28] Ackley, K., Neutron star extreme matter observatory: a kilohertz-band gravitational-wave detector in the global network, Publ. Astron. Soc. Austral., 37, e047 (2020) · doi:10.1017/pasa.2020.39
[29] Luo, J., TianQin: a space-borne gravitational wave detector, Class. Quantum Grav., 33 (2016) · doi:10.1088/0264-9381/33/3/035010
[30] Bugner, M.; Dietrich, T.; Bernuzzi, S.; Weyhausen, A.; Bernd, B., Solving 3D relativistic hydrodynamical problems with weighted essentially nonoscillatory discontinuous Galerkin methods, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.084004
[31] Hilditch, D.; Weyhausen, A.; Bernd, B., Pseudospectral method for gravitational wave collapse, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.063006
[32] Shankar, S.; Mösta, P.; Brandt, S. R.; Haas, R.; Schnetter, E.; de Graaf, Y., GRaM-X: a new GPU-accelerated dynamical spacetime GRMHD code for exascale computing with the Einstein Toolkit (2022)
[33] Schnetter, E.; Brandt, S.; Cupp, S.; Haas, R.; Mösta, P.; Shankar, S., CarpetX (0.1.0), Zenodo (2022) · doi:10.5281/zenodo.6131529
[34] Fernando, M.; Neilsen, D.; Lim, H.; Hirschmann, E.; Sundar, H., Massively parallel simulations of binary black hole Intermediate-Mass-Ratio inspirals, SIAM J. Sci. Comput., 41, C97-C138 (2019) · Zbl 1416.83050 · doi:10.1137/18M1196972
[35] Sven, K., Towards an exascale code for GRMHD on dynamical spacetimes, J. Phys.: Conf. Ser., 1031 (2018) · doi:10.1088/1742-6596/1031/1/012017
[36] Daszuta, B.; Zappa, F.; Cook, W.; Radice, D.; Bernuzzi, S.; Morozova, V., GR-Athena++: puncture evolutions on vertex-centered oct-tree adaptive mesh refinement, Astrophys. J. Supp., 257, 25 (2021) · doi:10.3847/1538-4365/ac157b
[37] Clough, K.; Figueras, P.; Finkel, H.; Kunesch, M.; Lim, E. A.; Tunyasuvunakool, S., GRChombo: numerical relativity with adaptive mesh refinement, Class. Quantum Grav., 32 (2015) · Zbl 1331.83003 · doi:10.1088/0264-9381/32/24/245011
[38] Andrade, T., GRChombo: an adaptable numerical relativity code for fundamental physics, J. Open Source Softw., 6, 3703 (2021) · doi:10.21105/joss.03703
[39] Kidder, L. E., SpECTRE: a task-based discontinuous galerkin code for relativistic astrophysics, J. Comput. Phys., 335, 84-114 (2017) · Zbl 1380.65274 · doi:10.1016/j.jcp.2016.12.059
[40] Deppe, N., Simulating magnetized neutron stars with discontinuous Galerkin methods, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.123031
[41] Rosswog, S.; Diener, P., SPHINCS_BSSN: a general relativistic Smooth Particle Hydrodynamics code for dynamical spacetimes, Class. Quantum Grav., 38 (2021) · Zbl 1480.83062 · doi:10.1088/1361-6382/abee65
[42] Cockburn, B.; Shu, C-W, The Runge-Kutta local projection P^1-discontinuous-Galerkin finite element method for scalar conservation laws, 25, 337-61 (1991) · Zbl 0732.65094
[43] Cockburn, B.; Shu, C-W, TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-35 (1989) · Zbl 0662.65083 · doi:10.2307/2008474
[44] Cockburn, B.; Lin, S-Y; Shu, C-W, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093 · doi:10.1016/0021-9991(89)90183-6
[45] Cockburn, B.; Hou, S.; Shu, C-W, The Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. IV: the multidimensional case, Math. Comput., 54, 545-81 (1990) · Zbl 0695.65066
[46] Cockburn, B.; Shu, C-W, The Runge-Kutta discontinuous galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[47] Radice, D.; Rezzolla, L., Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes, Phys. Rev. D, 84 (2011) · doi:10.1103/PhysRevD.84.024010
[48] Teukolsky, S. A., Formulation of discontinuous Galerkin methods for relativistic astrophysics, J. Comput. Phys., 312, 333-56 (2016) · Zbl 1352.65374 · doi:10.1016/j.jcp.2016.02.031
[49] Dumbser, M.; Guercilena, F.; Köppel, S.; Rezzolla, L.; Zanotti, O., Conformal and covariant Z4 formulation of the Einstein equations: strongly hyperbolic first-order reduction and solution with discontinuous Galerkin schemes, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.084053
[50] Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O., ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics, Mon. Not. R. Astron. Soc., 477, 4543-64 (2018) · doi:10.1093/mnras/sty734
[51] Cao, Z.; Pei, F.; Li-Wei, J.; Xia, Y., Binary black hole simulation with an adaptive finite element method II: application of local discontinuous galerkin method to Einstein equations (2018)
[52] Deppe, N.; Hébert, F.; Kidder, L. E.; Teukolsky, S. A., A high-order shock capturing discontinuous Galerkin-finite-difference hybrid method for GRMHD, Class. Quant. Grav., 39 (2022) · Zbl 1507.85009
[53] Arnowitt, R.; Deser, S.; Misner, C. W.; Witten, L., The dynamics of general relativity, Gravitation: An Introduction to Current Research, pp 227-65 (1962), New York: Wiley, New York · Zbl 0115.43103
[54] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (1972), Washington: U S Government Printing Office, Washington · Zbl 0543.33001
[55] Hébert, Fçois; Kidder, L. E.; Teukolsky, S. A., General-relativistic neutron star evolutions with the discontinuous Galerkin method, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.044041
[56] Tichy, W.; Rashti, A.; Dietrich, T.; Dudi, R.; Bernd, B., Constructing binary neutron star initial data with high spins, high compactnesses and high mass ratios, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.124046
[57] Bugner, M2018Discontinuous galerkin methods for general relativistic hydrodynamicsPhD ThesisJenaDissertation, Friedrich-Schiller-Universität Jena, 2017
[58] Lee Lindblom, M. A.; Scheel, L. E.; Kidder, R. O.; Rinne, O., A New generalized harmonic evolution system, Class. Quantum Grav., 23, S447-62 (2006) · Zbl 1191.83013 · doi:10.1088/0264-9381/23/16/S09
[59] Baumgarte, T. W.; Shapiro, S. L., Numerical Relativity, Solving Eisntein’s Equations on the Computer (2010), New York: Cambridge University Press, New York · Zbl 1198.83001
[60] Bruegmann, B., A pseudospectral matrix method for time-dependent tensor fields on a spherical shell, J. Comput. Phys., 235, 216-40 (2013) · doi:10.1016/j.jcp.2012.11.007
[61] Tichy, W., The initial value problem as it relates to numerical relativity, Rept. Prog. Phys., 80 (2017) · doi:10.1088/1361-6633/80/2/026901
[62] Banyuls, F.; Font, J. A.; Ibánez, J. M.; Martí, J. M.; Miralles, J. A., Numerical 3+1 general-relativistic hydrodynamics: a local characteristic approach, Astrophys. J., 476, 221 (1997) · doi:10.1086/303604
[63] Galeazzi, F.; Kastaun, W.; Rezzolla, L.; Font, J. A., Implementation of a simplified approach to radiative transfer in general relativity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.064009
[64] Gottlieb, S.; Shu, C-W; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89-112 (2001) · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[65] Font, J. A.; Miller, M.; Suen, W. M.; Tobias, M., Three-dimensional numerical general relativistic hydrodynamics: formulations, methods and code tests, Phys. Rev. D, 61 (2000) · doi:10.1103/PhysRevD.61.044011
[66] Dimmelmeier, H.; Font, J. A.; Müller, E., Relativistic simulations of rotational core collapse. I. Methods, initial models and code tests, Astron. Astrophys., 388, 917-35 (2002) · doi:10.1051/0004-6361:20020563
[67] Baiotti, L.; Hawke, I.; Montero, P. J.; Löffler, F.; Rezzolla, L.; Stergioulas, N.; Font, J. A.; Seidel, E., Three-dimensional relativistic simulations of rotating neutron star collapse to a kerr black hole, Phys. Rev. D, 71 (2005) · doi:10.1103/PhysRevD.71.024035
[68] Yamamoto, T.; Shibata, M.; Taniguchi, K., Simulating coalescing compact binaries by a new code SACRA, Phys. Rev. D, 78 (2008) · doi:10.1103/PhysRevD.78.064054
[69] Rezzolla, L.; Zanotti, O., Relativistic Hydrodynamics (2013), Oxford: Oxford University Press, Oxford · Zbl 1297.76002
[70] Baiotti, L.; Rezzolla, L., Binary neutron star mergers: a review of Einstein’s richest laboratory, Rept. Prog. Phys., 80 (2017) · doi:10.1088/1361-6633/aa67bb
[71] Poudel, A.; Tichy, W.; Brügmann, B.; Dietrich, T., Increasing the accuracy of binary neutron star simulations with an improved vacuum treatment, Phys. Rev. D, 102 (2020) · doi:10.1103/PhysRevD.102.104014
[72] Font, J. A.; Goodale, T.; Sai Iyer, M. A.; Miller, L. R.; Seidel, E.; Stergioulas, N.; Suen, W-M; Tobias, M., Three-dimensional general relativistic hydrodynamics. 2. long term dynamics of single relativistic stars, Phys. Rev. D, 65 (2002) · doi:10.1103/PhysRevD.65.084024
[73] McDermott, P. N.; van Horn, H. M.; Scholl, J. F., Nonradial g-mode oscillations of warm neutron stars, Astrophys. J., 268, 837-48 (1983) · doi:10.1086/161006
[74] Shu, C-W, TVB Uniformly High-Order Schemes for Conservation Laws, Math. Comput., 49, 105-21 (1987) · Zbl 0628.65075 · doi:10.1090/S0025-5718-1987-0890256-5
[75] Schaal, K.; Bauer, A.; Chandrashekar, P.; Pakmor, R.; Klingenberg, C.; Springel, V., Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement, Mon. Not. R. Astron. Soc., 453, 4278-300 (2015) · doi:10.1093/mnras/stv1859
[76] Moe, S. A.; Rossmanith, J. A.; Seal, D. C., A simple and effective high-order shock-capturing limiter for discontinuous galerkin methods (2015)
[77] Martí, J. M.; Müller, E., Numerical hydrodynamics in special relativity, Living Rev. Relativ., 2, 3 (1999) · Zbl 0944.83006 · doi:10.12942/lrr-1999-3
[78] Zhao, J.; Tang, H., Runge-Kutta discontinuous galerkin methods with weno limiter for the special relativistic hydrodynamics, J. Comput. Phys., 242, 138-68 (2013) · Zbl 1314.76035 · doi:10.1016/j.jcp.2013.02.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.