×

Relativistic \(N\)-particle energy shift in finite volume. (English) Zbl 1460.81066

Summary: We present a general method for deriving the energy shift of an interacting system of \(N\) spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the \(1/L\) expansion. We apply this method to obtain the ground state of \(N\) particles, and the first excited state of two and three particles to order \(L^{-6}\) in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the \(N\)-particle ground state energy shift in the complex \(\phi^4\) theory.

MSC:

81T25 Quantum field theory on lattices
81T12 Effective quantum field theories
81U20 \(S\)-matrix theory, etc. in quantum theory
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
83C40 Gravitational energy and conservation laws; groups of motions

Software:

R; hadron; GitHub

References:

[1] Beane, SR; Detmold, W.; Luu, TC; Orginos, K.; Savage, MJ; Torok, A., Multi-Pion Systems in Lattice QCD and the Three-Pion Interaction, Phys. Rev. Lett., 100 (2008)
[2] Hörz, B.; Hanlon, A., Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD, Phys. Rev. Lett., 123, 142002 (2019)
[3] Culver, C.; Mai, M.; Brett, R.; Alexandru, A.; Döring, M., Three pion spectrum in the I = 3 channel from lattice QCD, Phys. Rev. D, 101, 114507 (2020)
[4] M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding and C. Urbach, Scattering of two and three physical pions at maximal isospin from lattice QCD, arXiv:2008.03035 [INSPIRE].
[5] Blanton, TD; Romero-López, F.; Sharpe, SR, I = 3 Three-Pion Scattering Amplitude from Lattice QCD, Phys. Rev. Lett., 124 (2020)
[6] Hadron Spectrum collaboration, Energy-Dependent π^+π^+π^+Scattering Amplitude from QCD, Phys. Rev. Lett.126 (2021) 012001 [arXiv:2009.04931] [INSPIRE].
[7] Alexandru, A., Finite-volume energy spectrum of the K^−K^−K^−system, Phys. Rev. D, 102, 114523 (2020)
[8] Lee, TD; Huang, K.; Yang, CN, Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties, Phys. Rev., 106, 1135 (1957) · Zbl 0077.45003
[9] Huang, K.; Yang, CN, Quantum-mechanical many-body problem with hard-sphere interaction, Phys. Rev., 105, 767 (1957) · Zbl 0077.20905
[10] Wu, TT, Ground State of a Bose System of Hard Spheres, Phys. Rev., 115, 1390 (1959) · Zbl 0096.23701
[11] M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys.105 (1986) 153 [INSPIRE]. · Zbl 0614.58014
[12] Beane, SR; Detmold, W.; Savage, MJ, n-Boson Energies at Finite Volume and Three-Boson Interactions, Phys. Rev. D, 76 (2007)
[13] Detmold, W.; Savage, MJ, The Energy of n Identical Bosons in a Finite Volume at O(L**-7), Phys. Rev. D, 77 (2008)
[14] Tan, S., Three-boson problem at low energy and implications for dilute Bose-Einstein condensates, Phys. Rev. A, 78 (2008)
[15] Polejaeva, K.; Rusetsky, A., Three particles in a finite volume, Eur. Phys. J. A, 48, 67 (2012)
[16] Hansen, MT; Sharpe, SR, Relativistic, model-independent, three-particle quantization condition, Phys. Rev. D, 90, 116003 (2014)
[17] Hansen, MT; Sharpe, SR, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude, Phys. Rev. D, 92, 114509 (2015)
[18] H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force, JHEP09 (2017) 109 [arXiv:1706.07700] [INSPIRE].
[19] H.W. Hammer, J.Y. Pang and A. Rusetsky, Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data, JHEP10 (2017) 115 [arXiv:1707.02176] [INSPIRE]. · Zbl 1383.81156
[20] Mai, M.; Döring, M., Three-body Unitarity in the Finite Volume, Eur. Phys. J. A, 53, 240 (2017)
[21] Hansen, MT; Sharpe, SR, Lattice QCD and Three-particle Decays of Resonances, Ann. Rev. Nucl. Part. Sci., 69, 65 (2019)
[22] Kreuzer, S.; Hammer, HW, The Triton in a finite volume, Phys. Lett. B, 694, 424 (2011)
[23] Kreuzer, S.; Hammer, HW, On the modification of the Efimov spectrum in a finite cubic box, Eur. Phys. J. A, 43, 229 (2010)
[24] Kreuzer, S.; Hammer, HW, Efimov physics in a finite volume, Phys. Lett. B, 673, 260 (2009)
[25] Kreuzer, S.; Grießhammer, HW, Three particles in a finite volume: The breakdown of spherical symmetry, Eur. Phys. J. A, 48, 93 (2012)
[26] Hansen, MT; Sharpe, SR, Perturbative results for two and three particle threshold energies in finite volume, Phys. Rev. D, 93 (2016)
[27] M.T. Hansen and S.R. Sharpe, Threshold expansion of the three-particle quantization condition, Phys. Rev. D93 (2016) 096006 [Erratum ibid.96 (2017) 039901] [arXiv:1602.00324] [INSPIRE].
[28] Briceño, RA; Hansen, MT; Sharpe, SR, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles, Phys. Rev. D, 95 (2017)
[29] S.R. Sharpe, Testing the threshold expansion for three-particle energies at fourth order in ϕ^4theory, Phys. Rev. D96 (2017) 054515 [Erratum ibid.98 (2018) 099901] [arXiv:1707.04279] [INSPIRE].
[30] Briceño, RA; Hansen, MT; Sharpe, SR, Numerical study of the relativistic three-body quantization condition in the isotropic approximation, Phys. Rev. D, 98 (2018)
[31] Briceño, RA; Hansen, MT; Sharpe, SR, Three-particle systems with resonant subprocesses in a finite volume, Phys. Rev. D, 99 (2019)
[32] Blanton, TD; Romero-López, F.; Sharpe, SR, Implementing the three-particle quantization condition including higher partial waves, JHEP, 03, 106 (2019)
[33] Briceño, RA; Hansen, MT; Sharpe, SR; Szczepaniak, AP, Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism, Phys. Rev. D, 100 (2019)
[34] Romero-López, F.; Sharpe, SR; Blanton, TD; Briceño, RA; Hansen, MT, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states, JHEP, 10, 007 (2019) · Zbl 1427.81094
[35] Hansen, MT; Romero-López, F.; Sharpe, SR, Generalizing the relativistic quantization condition to include all three-pion isospin channels, JHEP, 07, 047 (2020)
[36] Blanton, TD; Sharpe, SR, Equivalence of relativistic three-particle quantization conditions, Phys. Rev. D, 102 (2020)
[37] Blanton, TD; Sharpe, SR, Alternative derivation of the relativistic three-particle quantization condition, Phys. Rev. D, 102 (2020)
[38] Döring, M.; Hammer, HW; Mai, M.; Pang, JY; Rusetsky, tA; Wu, J., Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D, 97 (2018)
[39] Pang, J-Y; Wu, J-J; Hammer, HW; Meißner, U-G; Rusetsky, A., Energy shift of the three-particle system in a finite volume, Phys. Rev. D, 99 (2019)
[40] Pang, J-Y; Wu, J-J; Geng, L-S, DDK system in finite volume, Phys. Rev. D, 102, 114515 (2020)
[41] Jackura, AW; Mikhasenko, M.; Pilloni, A., Equivalence of three-particle scattering formalisms, Phys. Rev. D, 100 (2019)
[42] Mikhasenko, M., Three-body scattering: Ladders and Resonances, JHEP, 08, 080 (2019)
[43] JPAC collaboration, Phenomenology of Relativistic3→3Reaction Amplitudes within the Isobar Approximation, Eur. Phys. J. C79 (2019) 56 [arXiv:1809.10523] [INSPIRE].
[44] Mai, M.; Döring, M., Finite-Volume Spectrum of π^+π^+and π^+π^+π^+Systems, Phys. Rev. Lett., 122 (2019)
[45] Mai, M.; Döring, M.; Culver, C.; Alexandru, A., Three-body unitarity versus finite-volume π^+π^+π^+spectrum from lattice QCD, Phys. Rev. D, 101 (2020)
[46] A.W. Jackura, R.A. Briceño, S.M. Dawid, M.H.E. Islam and C. McCarty, Solving relativistic three-body integral equations in the presence of bound states, arXiv:2010.09820 [INSPIRE].
[47] Dawid, SM; Szczepaniak, AP, Bound states in the B-matrix formalism for the three-body scattering, Phys. Rev. D, 103 (2021)
[48] HAL QCD collaboration, I = 2 ππ scattering phase shift from the HAL QCD method with the LapH smearing, PTEP2018 (2018) 043B04 [arXiv:1711.01883] [INSPIRE].
[49] HAL QCD collaboration, Exploring Three-Nucleon Forces in Lattice QCD, Prog. Theor. Phys.127 (2012) 723 [arXiv:1106.2276] [INSPIRE].
[50] Agadjanov, D.; Döring, M.; Mai, M.; Meißner, U-G; Rusetsky, A., The Optical Potential on the Lattice, JHEP, 06, 043 (2016)
[51] Bulava, J.; Hansen, MT, Scattering amplitudes from finite-volume spectral functions, Phys. Rev. D, 100 (2019)
[52] Guo, P.; Döring, M.; Szczepaniak, AP, Variational approach to N -body interactions in finite volume, Phys. Rev. D, 98 (2018)
[53] Guo, P., Modeling few-body resonances in finite volume, Phys. Rev. D, 102 (2020)
[54] Guo, P., Threshold expansion formula of N bosons in a finite volume from a variational approach, Phys. Rev. D, 101 (2020)
[55] König, S.; Lee, D., Volume Dependence of N-Body Bound States, Phys. Lett. B, 779, 9 (2018)
[56] Guo, P.; Gasparian, V., Numerical approach for finite volume three-body interaction, Phys. Rev. D, 97 (2018)
[57] Guo, P.; Morris, T., Multiple-particle interaction in (1+1)-dimensional lattice model, Phys. Rev. D, 99 (2019)
[58] Romero-López, F.; Rusetsky, A.; Urbach, C., Two- and three-body interactions in φ^4theory from lattice simulations, Eur. Phys. J. C, 78, 846 (2018)
[59] S.R. Beane et al., Charged multi-hadron systems in lattice QCD+QED, arXiv:2003.12130 [INSPIRE].
[60] Gasser, J.; Lyubovitskij, VE; Rusetsky, A., Hadronic atoms in QCD + QED, Phys. Rept., 456, 167 (2008)
[61] L. Landau and E. Lifschits, Quantum Mechanics, volume 3 of Course of Theoretical Physics, Pergamon Press, Oxford (2004).
[62] Gasser, J.; Leutwyler, H., Light Quarks at Low Temperatures, Phys. Lett. B, 184, 83 (1987)
[63] Lüscher, M., Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B, 354, 531 (1991)
[64] Symanzik, K., Cutoff dependence in lattice φ^4in four-dimensions theory, NATO Sci. Ser. B, 59, 313 (1980)
[65] Jülich Supercomputing Centre, JUQUEEN: IBM Blue Gene/Q Supercomputer System at the Jülich Supercomputing Centre, J. large-scale res. facil.1 (2015).
[66] Jülich Supercomputing Centre, JURECA: Modular supercomputer at Jülich Supercomputing Centre, J. large-scale res. facil.4 (2018).
[67] Jülich Supercomputing Centre, JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Supercomputing Centre, J. large-scale res. facil.5 (2019).
[68] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2019).
[69] B. Kostrzewa, J. Ostmeyer, M. Ueding and C. Urbach, Hadron: package to extract hadronic quantities, https://github.com/HISKP-LQCD/hadron (2020).
[70] N. Schlage, Relativistic N-particle energy shift in finite volume: auxiliary fits, https://github.com/NikSchlage/phi4_auxiliary (2020).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.