×

GRAMSES: a new route to general relativistic \(N\)-body simulations in cosmology. II: Initial conditions. (English) Zbl 1491.83017

Summary: We address the generation of initial conditions (ICs) for gramses, a code for nonlinear general relativistic (GR) \(N\)-body cosmological simulations recently introduced in Part I, [C. Barrera-Hinojosa and B. Li, J. Cosmol. Astropart. Phys. 2020, No. 1, Paper No. 7, 42 p. (2020; Zbl 1490.83039)]. gramses adopts a constant mean curvature slicing with a minimal distortion gauge, where the linear growth rate is scale-dependent, and the standard method for realising initial particle data is not straightforwardly applicable. A new method is introduced, in which the initial positions of particles are generated from the displacement field realised for a matter power spectrum as usual, but the velocity is calculated by finite-differencing the displacement fields around the initial redshift. In this way, all the information required for setting up the initial conditions is drawn from three consecutive input matter power spectra, and additional assumptions such as scale-independence of the linear growth factor and growth rate are not needed. We implement this method in a modified 2LPTic code, and demonstrate that in a Newtonian setting it can reproduce the velocity field given by the default 2LPTic code with subpercent accuracy. We also show that the matter and velocity power spectra of the initial particle data generated for gramses simulations using this method agree very well with the linear-theory predictions in the particular gauge used by gramses. Finally, we discuss corrections to the finite difference calculation of the velocity when radiation is present, as well as additional corrections implemented in gramses to ensure consistency. This method can be applied in ICs generation for GR simulations in generic gauges, and simulations of cosmological models with scale-dependent linear growth rate.

MSC:

83C56 Dark matter and dark energy
81V70 Many-body theory; quantum Hall effect
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
53E10 Flows related to mean curvature
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
83F05 Relativistic cosmology
35J60 Nonlinear elliptic equations
83C27 Lattice gravity, Regge calculus and other discrete methods in general relativity and gravitational theory
58J47 Propagation of singularities; initial value problems on manifolds
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

Citations:

Zbl 1490.83039

References:

[1] C. Barrera-Hinojosa and B. Li, 2020 GRAMSES: a new route to general relativistic N-body simulations in cosmology. Part I. Methodology and code description J. Cosmol. Astropart. Phys.2020 01 007 [1905.08890]
[2] N.E. Chisari and M. Zaldarriaga, 2011 Connection between Newtonian simulations and general relativity, https://doi.org/10.1103/PhysRevD.84.089901 Phys. Rev. D 83 123505 [Erratum ibid D 84 (2011) 089901] [1101.3555] · doi:10.1103/PhysRevD.84.089901
[3] S.F. Flender and D.J. Schwarz, 2012 Newtonian versus relativistic cosmology, https://doi.org/10.1103/PhysRevD.86.063527 Phys. Rev. D 86 063527 [1207.2035] · doi:10.1103/PhysRevD.86.063527
[4] J.-c. Hwang, H. Noh and J.-O. Gong, 2012 Second order solutions of cosmological perturbation in the matter dominated era, https://doi.org/10.1088/0004-637X/752/1/50 Astrophys. J.752 50 [1204.3345] · doi:10.1088/0004-637X/752/1/50
[5] R. Scoccimarro, 1998 Transients from initial conditions: a perturbative analysis, https://doi.org/10.1046/j.1365-8711.1998.01845.x Mon. Not. Roy. Astron. Soc.299 1097 [astro-ph/9711187] · doi:10.1046/j.1365-8711.1998.01845.x
[6] M. Crocce, S. Pueblas and R. Scoccimarro, 2006 Transients from Initial Conditions in Cosmological Simulations, https://doi.org/10.1111/j.1365-2966.2006.11040.x Mon. Not. Roy. Astron. Soc.373 369 [astro-ph/0606505] · doi:10.1111/j.1365-2966.2006.11040.x
[7] E. Bertschinger, 2001 Multiscale Gaussian random fields for cosmological simulations, https://doi.org/10.1086/322526 Astrophys. J. Suppl.137 1 [astro-ph/0103301] · doi:10.1086/322526
[8] S. Prunet, C. Pichon, D. Aubert, D. Pogosyan, R. Teyssier and S. Gottloeber, 2008 Initial Conditions for Large Cosmological Simulations, https://doi.org/10.1086/590370 Astrophys. J. Suppl.178 179 [0804.3536] · doi:10.1086/590370
[9] J.B. Mertens, J.T. Giblin and G.D. Starkman, 2016 Integration of inhomogeneous cosmological spacetimes in the BSSN formalism, https://doi.org/10.1103/PhysRevD.93.124059 Phys. Rev. D 93 124059 [1511.01106] · doi:10.1103/PhysRevD.93.124059
[10] H.J. Macpherson, P.D. Lasky and D.J. Price, 2017 Inhomogeneous Cosmology with Numerical Relativity, https://doi.org/10.1103/PhysRevD.95.064028 Phys. Rev. D 95 064028 [1611.05447] · doi:10.1103/PhysRevD.95.064028
[11] D. Daverio, Y. Dirian and E. Mitsou, 2019 General relativistic cosmological N-body simulations. Part I. Time integration J. Cosmol. Astropart. Phys.2019 10 065 [1904.07841] · Zbl 1515.83005
[12] C.M. Baugh, E. Gaztanaga and G. Efstathiou, 1995 A Comparison of the evolution of density fields in perturbation theory and numerical simulations — 2. Counts-in-cells analysis, https://doi.org/10.1093/mnras/274.4.1049 Mon. Not. Roy. Astron. Soc.274 1049 [astro-ph/9408057] · doi:10.1093/mnras/274.4.1049
[13] Ya. B. Zeldovich, 1970 Gravitational instability: An Approximate theory for large density perturbations Astron. Astrophys.5 84
[14] E.V. Linder and R.N. Cahn, 2007 Parameterized Beyond-Einstein Growth, https://doi.org/10.1016/j.astropartphys.2007.09.003 Astropart. Phys.28 481 [astro-ph/0701317] · doi:10.1016/j.astropartphys.2007.09.003
[15] T. Narikawa and K. Yamamoto, 2010 Characterising linear growth rate of cosmological density perturbations in f(R) model, https://doi.org/10.1103/PhysRevD.81.129903 Phys. Rev. D 81 043528 [Erratum ibid D 81 (2010) 129903] [0912.1445] · doi:10.1103/PhysRevD.81.129903
[16] C. Fidler, C. Rampf, T. Tram, R. Crittenden, K. Koyama and D. Wands, 2015 General relativistic corrections to N-body simulations and the Zel’dovich approximation, https://doi.org/10.1103/PhysRevD.92.123517 Phys. Rev. D 92 123517 [1505.04756] · doi:10.1103/PhysRevD.92.123517
[17] W. Valkenburg and B. Hu, 2015 Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity J. Cosmol. Astropart. Phys.2015 09 054 [1505.05865]
[18] A. Lewis, A. Challinor and A. Lasenby, 2000 Efficient computation of CMB anisotropies in closed FRW models, https://doi.org/10.1086/309179 Astrophys. J.538 473 [astro-ph/9911177] · doi:10.1086/309179
[19] L. Smarr and J.W. York, Jr., 1978 Kinematical conditions in the construction of space-time, https://doi.org/10.1103/PhysRevD.17.2529 Phys. Rev. D 17 2529 · doi:10.1103/PhysRevD.17.2529
[20] J.T. Giblin, J.B. Mertens and G.D. Starkman, 2017 A cosmologically motivated reference formulation of numerical relativity, https://doi.org/10.1088/1361-6382/aa8af9 Class. Quant. Grav.34 214001 [1704.04307] · Zbl 1380.83019 · doi:10.1088/1361-6382/aa8af9
[21] J.T. Giblin, J.B. Mertens, G.D. Starkman and C. Tian, 2019 Limited accuracy of linearized gravity, https://doi.org/10.1103/PhysRevD.99.023527 Phys. Rev. D 99 023527 [1810.05203] · doi:10.1103/PhysRevD.99.023527
[22] M. Shibata, 2015 100 Years Of General Relativity. Vol. 1: Numerical Relativity, World Scientific, Singapore
[23] L. Smarr and J.W. York, Jr., 1978 Radiation gauge in general relativity, https://doi.org/10.1103/PhysRevD.17.1945 Phys. Rev. D 17 1945 · doi:10.1103/PhysRevD.17.1945
[24] S. Bonazzola, E. Gourgoulhon, P. Grandclement and J. Novak, 2004 A Constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates, https://doi.org/10.1103/PhysRevD.70.104007 Phys. Rev. D 70 104007 [gr-qc/0307082] · doi:10.1103/PhysRevD.70.104007
[25] I. Cordero-Carrion, J.M. Ibáñez, E. Gourgoulhon, J.L. Jaramillo and J. Novak, 2008 Mathematical Issues in a Fully-Constrained Formulation of Einstein Equations, https://doi.org/10.1103/PhysRevD.77.084007 Phys. Rev. D 77 084007 [0802.3018] · doi:10.1103/PhysRevD.77.084007
[26] J.A. Isenberg, 2008 Waveless approximation theories of gravity, https://doi.org/10.1142/S0218271808011997 Int. J. Mod. Phys. D 17 265 [gr-qc/0702113] · Zbl 1153.83333 · doi:10.1142/S0218271808011997
[27] J.R. Wilson and G.J. Mathews, 1989 Relativistic hydrodynamics, in International Workshop on Frontiers in Numerical Relativity, Cambridge University Press, Cambridge U.K. , pg. 306
[28] I. Cordero-Carrión, P. Cerdá-Durán, H. Dimmelmeier, J.L. Jaramillo, J. Novak and E. Gourgoulhon, 2009 An Improved constrained scheme for the Einstein equations: An Approach to the uniqueness issue, https://doi.org/10.1103/PhysRevD.79.024017 Phys. Rev. D 79 024017 [0809.2325] · Zbl 1222.83024 · doi:10.1103/PhysRevD.79.024017
[29] C.-P. Ma and E. Bertschinger, 1995 Cosmological perturbation theory in the synchronous and conformal Newtonian gauges, https://doi.org/10.1086/176550 Astrophys. J.455 7 [astro-ph/9506072] · doi:10.1086/176550
[30] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview, [1104.2932]
[31] D. Blas, J. Lesgourgues and T. Tram, 2011 The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes J. Cosmol. Astropart. Phys.2011 07 034 [1104.2933]
[32] G.W. Pettinari, C. Fidler, R. Crittenden, K. Koyama and D. Wands, 2013 The intrinsic bispectrum of the Cosmic Microwave Background J. Cosmol. Astropart. Phys.2013 04 003 [1302.0832]
[33] J.M. Bardeen, 1980 Gauge Invariant Cosmological Perturbations, https://doi.org/10.1103/PhysRevD.22.1882 Phys. Rev. D 22 1882 · doi:10.1103/PhysRevD.22.1882
[34] J. Adamek, D. Daverio, R. Durrer and M. Kunz, 2016 gevolution: a cosmological N-body code based on General Relativity J. Cosmol. Astropart. Phys.2016 07 053 [1604.06065]
[35] O. Lahav, P.B. Lilje, J.R. Primack and M.J. Rees, 1991 Dynamical effects of the cosmological constant, https://doi.org/10.1093/mnras/251.1.128 Mon. Not. Roy. Astron. Soc.251 128, https://academic.oup.com/mnras/article-pdf/251/1/128/18523334/mnras251-0128.pdf · doi:10.1093/mnras/251.1.128
[36] C. Fidler, T. Tram, C. Rampf, R. Crittenden, K. Koyama and D. Wands, 2016 Relativistic Interpretation of Newtonian Simulations for Cosmic Structure Formation J. Cosmol. Astropart. Phys.2016 09 031 [1606.05588]
[37] C. Fidler, T. Tram, C. Rampf, R. Crittenden, K. Koyama and D. Wands, 2017 General relativistic weak-field limit and Newtonian N-body simulations J. Cosmol. Astropart. Phys.2017 12 022 [1708.07769] · Zbl 1515.83019
[38] C. Fidler, T. Tram, C. Rampf, R. Crittenden, K. Koyama and D. Wands, 2017 Relativistic initial conditions for N-body simulations J. Cosmol. Astropart. Phys.2017 06 043 [1702.03221] · Zbl 1515.83344
[39] J. Adamek, J. Brandbyge, C. Fidler, S. Hannestad, C. Rampf and T. Tram, 2017 The effect of early radiation in N-body simulations of cosmic structure formation, https://doi.org/10.1093/mnras/stx1157 Mon. Not. Roy. Astron. Soc.470 303 [1703.08585] · doi:10.1093/mnras/stx1157
[40] C. Fidler, A. Kleinjohann, T. Tram, C. Rampf and K. Koyama, 2019 A new approach to cosmological structure formation with massive neutrinos J. Cosmol. Astropart. Phys.2019 01 025 [1807.03701] · Zbl 1542.83051
[41] T.W. Baumgarte and S.L. Shapiro, 2010 Numerical relativity: solving Einstein’s equations on the computer, Cambridge University Press, Cambridge U.K. · Zbl 1198.83001 · doi:10.1017/CBO9781139193344
[42] M.C. Cautun and R. van de Weygaert, The DTFE public software: The Delaunay Tessellation Field Estimator code, [1105.0370]
[43] N. Hand et al., 2018 nbodykit: an open-source, massively parallel toolkit for large-scale structure, https://doi.org/10.3847/1538-3881/aadae0 Astron. J.156 160 [1712.05834] · doi:10.3847/1538-3881/aadae0
[44] S. Colombi, A.H. Jaffe, D. Novikov and C. Pichon, 2009 Accurate estimators of power spectra in N-body simulations, https://doi.org/10.1111/j.1365-2966.2008.14176.x Mon. Not. Roy. Astron. Soc.393 511 [0811.0313] · doi:10.1111/j.1365-2966.2008.14176.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.