×

Ergodic properties of equilibrium measures for smooth three dimensional flows. (English) Zbl 1366.37087

The authors consider the problem of understanding when a smooth flow is a Bernoulli automorphism. This problem was extensively studied by D. Ornstein and B. Weiss [Ergodic Theory Dyn. Syst. 18, No. 2, 441–456 (1998; Zbl 0915.58076)] and A. Katok and K. Burns [ibid. 14, No. 4, 757–785 (1994; Zbl 0816.58029)] among others. The purpose of this article is to study the ergodic structure of measures of maximal entropy for flows in three dimensional manifolds and with positive entropy.
One the main results (Theorem 1.1) states that if \(\mathbf T=\{T_t:M\to M\}\) is a flow on a compact three dimensional \(C^\infty\) manifold \(M\), which is generated by a \(C^{1+\varepsilon}\) vector field \(X\) on \(M\), then any equilibrium measure \(\mu\) for a Hölder continuous potential has at most countable many ergodic components \(\mu_n\) with positive entropy and such that \(\mathbf T\) is Bernoulli up to a period with respect to each measure. This means that the flow is Bernoulli or isomorphic to a product of a Bernoulli flow and a rotational flow.

MSC:

37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37B10 Symbolic dynamics
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37C10 Dynamics induced by flows and semiflows
37C35 Orbit growth in dynamical systems

References:

[1] R. Abraham and J. E. Marsden, Foundations of mechanics, Second edition, revised and enlarged, with the assistance of Tudor Ra iu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.Zbl 0393.70001 MR 0515141
[2] L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR, 128 (1959), 873–875.Zbl 0094.10002 MR 0113985 · Zbl 0094.10002
[3] W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), 122 (1985), no. 1, 171–203.Zbl 0589.53047 MR 0799256 · Zbl 0589.53047
[4] L. Barreira and Y. Pesin, Nonuniform hyperbolicity, Encyclopedia of MathematicsanditsApplications,115,CambridgeUniversityPress, Cambridge, 2007.Zbl 1144.37002 MR 2348606
[5] R. Bowen, Bernoulli equilibrium states for Axiom A diffeomorphisms, Math. Systems Theory, 8 (1974/75), no. 4, 289–294.Zbl 0304.28012 MR 0387539 · Zbl 0304.28012
[6] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, 470. Springer-Verlag, Berlin, 1975. Zbl 0308.28010 MR 442989 · Zbl 0308.28010
[7] R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), no. 1, 43–67.Zbl 0346.58009 MR 0451307 · Zbl 0346.58009
[8] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math., 29 (1975), no. 3, 181–202.Zbl 0311.58010 MR 0380889 · Zbl 0311.58010
[9] R. Bowen and P. Walters, Expansive one-parameter flows, J. Diff. Equations, 12 (1972), 180–193.Zbl 0242.54041 MR 0341451 · Zbl 0242.54041
[10] M. I. Brin, The topology of group extensions of C -systems, Mat. Zametki, 18 (1975), no. 3, 453–465.Zbl 0332.58010 MR 0394764
[11] K. Burns and M. Gerber, Real analytic Bernoulli geodesic flows on S2, Ergodic Theory Dynam. Systems, 9 (1989), no. 1, 27–45.Zbl 0645.58029 MR 0991488 · Zbl 0645.58029
[12] J. Buzzi and O. Sarig, Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergodic Theory Dynam. Systems, 23 (2003), no. 5, 1383–1400.Zbl 1037.37005 MR 2018604 · Zbl 1037.37005
[13] I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaı, Ergodic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245, Springer-Verlag, New York, 1982.Zbl 0493.28007 MR 0832433
[14] Y. Daon, Bernoullicity of equilibrium measures on countable Markov shifts, Discrete Contin. Dyn. Syst., 33 (2013), no. 9, 4003–4015.Zbl 06224546 MR 3038050 104CMH · Zbl 1417.37103
[15] H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008. Zbl 1153.53002 MR 2397738
[16] Y. Guivarc’h and J. Hardy, Théorèmes limites pour une classe de chaînes de Markov et applications aux difféomorphismes d’Anosov, Ann. Inst. H. Poincaré Probab. Statist., 24 (1988), no. 1, 73–98.Zbl 0649.60041 MR 0937957
[17] B. M. Gurevič, Certain conditions for the existence of K-decompositions for special flows, Trudy Moskov. Mat. Obšč., 17 (1967), 89–116.MR 0229796
[18] H. Hu, Y. Pesin and A. Talitskaya, Every compact manifold carries a hyperbolic Bernoulli flow, in Modern Dynamical Systems and Applications, 347–358, Cambridge Univ. Press, Cambridge, 2004.Zbl 1147.37316 MR 2093309 · Zbl 1147.37316
[19] A. Katok, Entropy and closed geodesics, Ergodic Theory Dynam. Systems, 2 (1983), no. 3-4, 339–365.Zbl 0525.58027 MR 0721728 · Zbl 0525.58027
[20] A. Katok, Infinitesimal Lyapunov functions, invariant cone families and stochastic properties of smooth dynamical systems, Ergodic Theory Dynam. Systems, 14 (1994), no. 4, 757–785.Zbl 0816.58029 MR 1304141 · Zbl 0816.58029
[21] A. Katok, F. Ledrappier, F. Przytycki and J.-M. Strelcyn, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, 1222, Springer-Verlag, Berlin, 1986.Zbl 0658.58001 MR 0872698
[22] M. Keane, Strongly mixing g-measures, Invent. Math., 16 (1972), 309–324. Zbl 0241.28014 MR 0310193 · Zbl 0241.28014
[23] B. P. Kitchens, Symbolic dynamics, Universitext. Springer-Verlag, Berlin, 1998. Zbl 0892.58020 MR 1484730 · Zbl 0892.58020
[24] G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds, Ann. of Math. (2), 148 (1998), no. 1, 291–314. Zbl 0946.53045 MR 1652924 · Zbl 0946.53045
[25] O. E. Lanford, III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys., 13 (1969), 194–215.MR 0256687
[26] F. Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 30 (1974), 185–202. Zbl 0276.93004 MR 0404584 · Zbl 0276.93004
[27] F. Ledrappier, Propriétés ergodiques des mesures de Sinaï, Inst. Hautes Études Sci. Publ. Math., 59 (1984), 163–188.Zbl 0561.58037 MR 0743818 · Zbl 0561.58037
[28] Y. Lima and O. Sarig, Symbolic dynamics for three dimensional flows with positive entropy, preprint. Vol. 91 (2016)105
[29] S. E. Newhouse, Continuity properties of entropy, Ann. of Math. (2), 129 (1989), no. 2, 215–235.Zbl 0676.58039 MR 0986792 · Zbl 0676.58039
[30] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Math., 4 (1970), 337–352.Zbl 0197.33502 MR 0257322 · Zbl 0197.33502
[31] D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts, Advances in Math., 5 (1971), 349–364.Zbl 0227.28015 MR 0274717 · Zbl 0227.28015
[32] D. Ornstein and B. Weiss, On the Bernoulli nature of systems with some hyperbolic structure, Ergodic Theory Dynam. Systems, 18 (1998), no. 2, 441– 456.Zbl 0915.58076 MR 1619567 · Zbl 0915.58076
[33] D. S. Ornstein, Imbedding Bernoulli shifts in flows, in Contributions to Ergodic Theory and Probability. Proc. Conf., Ohio State Univ., Columbus, Ohio, (1970), 178–218. Springer, Berlin, 1970.Zbl 0227.28013 MR 0272985 · Zbl 0227.28013
[34] D. S. Ornstein, The isomorphism theorem for Bernoulli flows, Advances in Math., 10 (1973), 124–142.Zbl 0265.28011 MR 0318452 · Zbl 0265.28011
[35] D. S. Ornstein, Ergodic theory, randomness, and dynamical systems, Yale Mathematical Monographs, 5, Yale University Press, New Haven, Conn.London, 1974.Zbl 0296.28016 MR 0447525 · Zbl 0296.28016
[36] D. S. Ornstein and B. Weiss, Geodesic flows are Bernoullian, Israel J. Math., 14 (1973), 184–198.Zbl 0256.58006 MR 0325926 · Zbl 0256.58006
[37] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, 187–188 (1990), 268.Zbl 0726.58003 MR 1085356 · Zbl 0726.58003
[38] Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat., 40 (1976), no. 6, 1332–1379, 1440.Zbl 0372.58009 MR 0458490
[39] Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk, 32 (1977), no. 4, 55–112, 287.Zbl 0383.58011 MR 0466791 · Zbl 0383.58011
[40] Ja. B. Pesin, Equations for the entropy of a geodesic flow on a compact riemannian manifold without conjugate points, Mathematical notes of the Academy of Sciences of the USSR, 24 (1978), no. 4, 796–805.Zbl 0411.58016 MR 0513656 · Zbl 0411.58016
[41] M. S. Pinsker, Dynamical systems with completely positive or zero entropy, Soviet Math. Dokl., 1 (1960), 937–938.Zbl 0099.12302 MR 0152628 · Zbl 0099.12302
[42] M. Ratner, Markov partitions for Anosov flows on n-dimensional manifolds, Israel J. Math., 15 (1973), 92–114.Zbl 0269.58010 MR 0339282 · Zbl 0269.58010
[43] M. Ratner, Anosov flows with Gibbs measures are also Bernoullian, Israel J. Math., 17 (1974), 380–391.Zbl 0304.28011 MR 0374387 106CMH · Zbl 0304.28011
[44] M. Ratner, Bernoulli flow over maps of the interval, Israel J. Math., 31 (1978), no. 3-4, 298–314.Zbl 0435.58022 MR 0516152 · Zbl 0435.58022
[45] V. A. Rohlin, Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR Ser. Mat., 25 (1961), 499–530.MR 0143873
[46] V. A. Rohlin and Ja. G. Sinaı, The structure and properties of invariant measurable partitions, Dokl. Akad. Nauk SSSR, 141 (1961), 1038–1041. MR 0152629
[47] D. Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat., 9 (1978), no. 1, 83–87.Zbl 0432.58013 MR 0516310 · Zbl 0432.58013
[48] D. Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. Zbl 0401.28016 MR 0511655
[49] O. M. Sarig, Thermodynamic formalism for null recurrent potentials, Israel J. Math., 121 (2001), 285–311.Zbl 0992.37025 MR 1818392 · Zbl 0992.37025
[50] O. M. Sarig, Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn., 5 (2011), no. 3, 593–608.Zbl 1276.37025 MR 2854097 · Zbl 1276.37025
[51] Ja. G. Sinaı, Gibbs measures in ergodic theory, Uspehi Mat. Nauk, 27 (1972), no. 4, 21–64.Zbl 0246.28008 MR 0399421
[52] J.-P. Thouvenot, Entropy, isomorphism and equivalence in ergodic theory, in Handbook of dynamical systems, Vol. 1A, 205–238, North-Holland, Amsterdam, 2002.Zbl 1084.37007 MR 1928519 Received April 7, 2015 F. Ledrappier, Sorbonne Universités, UPMC Univ. Paris 06, UMR 7599, LPMA, F-75005 Paris, France; and CNRS, UMR 7599, LPMA, F-75005 Paris, France E-mail:fledrapp@nd.edu Y. Lima, Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France E-mail:yurilima@gmail.com O. Sarig, Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot, Israel E-mail:omsarig@gmail.com
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.