×

Elliptic Reeb orbit on some real projective three-spaces via ECH. (English) Zbl 07927755

Summary: We prove the existence of an elliptic Reeb orbit for some contact forms on the real projective three space \(\mathbb{R} P^3\). The main ingredient of the proof is the existence of a distinguished pseudoholomorphic curve in the symplectization given by the \(U\) map on ECH. Also, we check that the first value on the ECH spectrum coincides with the smallest action of null-homologous orbit sets for 1/4-pinched Riemannian metrics. This action coincides with twice the length of a shortest closed geodesic. In addition, we compute the ECH spectrum for the irrational Katok metric example.

MSC:

53D10 Contact manifolds (general theory)
53D25 Geodesic flows in symplectic geometry and contact geometry
53D42 Symplectic field theory; contact homology

References:

[1] Abreu, M. and Macarini, L.: Dynamical convexity and elliptic periodic orbits for Reeb flows. Math. Ann. 369 (2017), no. 1-2, 331-386. Zbl 1375.53096 MR 3694649 · Zbl 1375.53096 · doi:10.1007/s00208-017-1532-4
[2] Anosov, D. V.: On generic properties of closed geodesics. Math. USSR, Izv. 21 (1983), no. 1, 1-29. Zbl 0554.58043 MR 0670163 · Zbl 0554.58043 · doi:10.1070/im1983v021n01abeh001637
[3] Ballmann, W., Thorbergsson, G. and Ziller, W.: Some existence theorems for closed geodesics. Comment. Math. Helv. 58 (1983), no. 3, 416-432. Zbl 0532.53034 MR 0727711 · Zbl 0532.53034 · doi:10.1007/BF02564645
[4] Benedetti, G. and Kang, J.: Relative Hofer-Zehnder capacity and positive symplectic homol-ogy. J. Fixed Point Theory Appl. 24 (2022), no. 2, article no. 44, 32 pp. Zbl 1502.53124 MR 4423620 · Zbl 1502.53124 · doi:10.1007/s11784-022-00963-8
[5] Birkhoff, G. D.: Dynamical systems. Amer. Math. Soc. Colloq. Publ. 9, American Mathemati-cal Society, Providence, RI, 1966. Zbl 53.0732.01 MR 0209095 · Zbl 0171.05402 · doi:10.1090/coll/009
[6] Burns, K. and Matveev, V. S.: Open problems and questions about geodesics. Ergodic Theory Dynam. Systems 41 (2021), no. 3, 641-684. Zbl 1486.53003 MR 4211918 · Zbl 1486.53003 · doi:10.1017/etds.2019.73
[7] Calabi, E. and Cao, J. G.: Simple closed geodesics on convex surfaces. J. Differential Geom. 36 (1992), no. 3, 517-549. Zbl 0768.53019 MR 1189495 · Zbl 0768.53019 · doi:10.4310/jdg/1214453180
[8] Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In Problems in analy-sis (Sympos. in honor of Salomon Bochner Princeton Univ., Princeton, NJ, 1969), pp. 195-199. Princeton University Press, Princeton, NJ, 1970. Zbl 0212.44903 MR 0402831 · Zbl 0212.44903 · doi:10.1515/9781400869312-013
[9] Colin, V., Dehornoy, P., Hryniewicz, U. and Rechtman, A.: Generic properties of 3-dimen-sional Reeb flows: Birkhoff sections and entropy. Comment. Math. Helv. 99 (2024), no. 3, 557-611. Zbl 07891427 MR 4771036 · Zbl 07891427 · doi:10.4171/CMH/573
[10] Colin, V., Dehornoy, P. and Rechtman, A.: On the existence of supporting broken book decom-positions for contact forms in dimension 3. Invent. Math. 231 (2023), no. 3, 1489-1539. Zbl 1512.53098 MR 4549092 · Zbl 1512.53098 · doi:10.1007/s00222-022-01160-7
[11] Contreras, G. and Mazzucchelli, M.: Existence of Birkhoff sections for Kupka-Smale Reeb flows of closed contact 3-manifolds. Geom. Funct. Anal. 32 (2022), no. 5, 951-979. Zbl 1506.37040 MR 4498837 · Zbl 1506.37040 · doi:10.1007/s00039-022-00616-5
[12] Cristofaro-Gardiner, D., Hryniewicz, U., Hutchings, M. and Liu, H.: Contact three-manifolds with exactly two simple Reeb orbits. Geom. Topol. 27 (2023), no. 9, 3801-3831. Zbl 07777471 MR 4674840 · Zbl 07777471 · doi:10.2140/gt.2023.27.3801
[13] Cristofaro-Gardiner, D., Hryniewicz, U., Hutchings, M. and Liu, H.: Proof of Hofer-Wysocki-Zehnder’s two or infinity conjecture. Preprint 2023, arXiv: 2310.07636.
[14] Cristofaro-Gardiner, D. and Hutchings, M.: From one Reeb orbit to two. J. Differential Geom. 102 (2016), no. 1, 25-36. Zbl 1338.53108 MR 3447085 · Zbl 1338.53108 · doi:10.4310/jdg/1452002876
[15] Cristofaro-Gardiner, D., Hutchings, M. and Pomerleano, D.: Torsion contact forms in three dimensions have two or infinitely many Reeb orbits. Geom. Topol. 23 (2019), no. 7, 3601-3645. Zbl 1432.53106 MR 4047649 · Zbl 1432.53106 · doi:10.2140/gt.2019.23.3601
[16] Ferreira, B. and Ramos, V. G. B.: Symplectic embeddings into disk cotangent bundles. J. Fixed Point Theory Appl. 24 (2022), no. 3, article no. 62, 31 pp. Zbl 07591740 MR 4482142 · Zbl 1529.53081 · doi:10.1007/s11784-022-00979-0
[17] Ferreira, B., Ramos, V. G. B. and Vicente, A.: Gromov width of the disk cotangent bundle of spheres of revolution. Preprint 2023, arXiv: 2301.08528.
[18] Franks, J.: Area preserving homeomorphisms of open surfaces of genus zero. New York J. Math. 2 (1996), 1-19, electronic. Zbl 0891.58033 MR 1371312 · Zbl 0891.58033
[19] Gutt, J., Hutchings, M. and Ramos, V. G. B.: Examples around the strong Viterbo conjecture. J. Fixed Point Theory Appl. 24 (2022), no. 2, article no. 41, 22 pp. Zbl 1497.53132 MR 4413022 · Zbl 1497.53132 · doi:10.1007/s11784-022-00949-6
[20] Harris, A. and Paternain, G. P.: Dynamically convex Finsler metrics and J -holomorphic embedding of asymptotic cylinders. Ann. Global Anal. Geom. 34 (2008), no. 2, 115-134. Zbl 1149.53045 MR 2425525 · Zbl 1149.53045 · doi:10.1007/s10455-008-9111-2
[21] Hofer, H., Wysocki, K. and Zehnder, E.: A characterisation of the tight three-sphere. Duke Math. J. 81 (1995), no. 1, 159-226. Zbl 0861.57026 MR 1381975 · Zbl 0861.57026 · doi:10.1215/S0012-7094-95-08111-3
[22] Hofer, H., Wysocki, K. and Zehnder, E.: The dynamics on three-dimensional strictly convex energy surfaces. Ann. of Math. (2) 148 (1998), no. 1, 197-289. Zbl 0944.37031 MR 1652928 · Zbl 0944.37031 · doi:10.2307/120994
[23] Honda, K.: On the classification of tight contact structures. I. Geom. Topol. 4 (2000), 309-368. Zbl 0980.57010 MR 1786111 · Zbl 0980.57010 · doi:10.2140/gt.2000.4.309
[24] Hryniewicz, U. L. and Salomão, P. A. S.: Global properties of tight Reeb flows with applica-tions to Finsler geodesic flows on S 2 . Math. Proc. Cambridge Philos. Soc. 154 (2013), no. 1, 1-27. Zbl 1326.53053 MR 3002580 · Zbl 1326.53053 · doi:10.1017/S0305004112000333
[25] Hryniewicz, U. L. and Salomão, P. A. S.: Introdução à geometria Finsler. Publ. Mat. IMPA., Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2013. Zbl 1292.53001 MR 3100520 · Zbl 1292.53001
[26] Hryniewicz, U. L. and Salomão, P. A. S.: Elliptic bindings for dynamically convex Reeb flows on the real projective three-space. Calc. Var. Partial Differential Equations 55 (2016), no. 2, article no. 43, 57 pp. Zbl 1345.53082 MR 3485982 · Zbl 1345.53082 · doi:10.1007/s00526-016-0975-x
[27] Hryniewicz, U. L., Salomão, P. A. S. and Siefring, R.: Global surfaces of section with positive genus for dynamically convex Reeb flows. J. Fixed Point Theory Appl. 24 (2022), no. 2, article no. 45, 21 pp. Zbl 1496.32042 MR 4429382 · Zbl 1496.32042 · doi:10.1007/s11784-022-00950-z
[28] Hryniewicz, U. L., Salomão, P. A. S. and Wysocki, K.: Genus zero global surfaces of section for Reeb flows and a result of Birkhoff. J. Eur. Math. Soc. (JEMS) 25 (2023), no. 9, 3365-3451. Zbl 07755540 MR 4634675 · Zbl 1539.37065 · doi:10.4171/jems/1220
[29] Hutchings, M.: An index inequality for embedded pseudoholomorphic curves in symplectiza-tions. J. Eur. Math. Soc. (JEMS) 4 (2002), no. 4, 313-361. Zbl 1017.58005 MR 1941088 · Zbl 1017.58005 · doi:10.1007/s100970100041
[30] Hutchings, M.: Taubes’s proof of the Weinstein conjecture in dimension three. Bull. Amer. Math. Soc. (N.S.) 47 (2010), no. 1, 73-125. Zbl 1197.57023 MR 2566446 · Zbl 1197.57023 · doi:10.1090/S0273-0979-09-01282-8
[31] Hutchings, M.: Quantitative embedded contact homology. J. Differential Geom. 88 (2011), no. 2, 231-266. Zbl 1238.53061 MR 2838266 · Zbl 1238.53061 · doi:10.4310/jdg/1320067647
[32] Hutchings, M.: Lecture notes on embedded contact homology. In Contact and symplectic topology, pp. 389-484. Bolyai Soc. Math. Stud. 26, János Bolyai Math. Soc., Budapest, 2014. Zbl 1432.53126 MR 3220947 · Zbl 1432.53126 · doi:10.1007/978-3-319-02036-5_9
[33] Hutchings, M. and Taubes, C. H.: Gluing pseudoholomorphic curves along branched covered cylinders. I. J. Symplectic Geom. 5 (2007), no. 1, 43-137. Zbl 1157.53047 MR 2371184 · Zbl 1157.53047 · doi:10.4310/JSG.2007.v5.n1.a5
[34] Hutchings, M. and Taubes, C. H.: Gluing pseudoholomorphic curves along branched covered cylinders. II. J. Symplectic Geom. 7 (2009), no. 1, 29-133. Zbl 1193.53183 MR 2491716 · Zbl 1193.53183 · doi:10.4310/JSG.2009.v7.n1.a2
[35] Katok, A. B.: Ergodic perturbations of degenerate integrable Hamiltonian systems. Math. USSR, Izv. 7 (1973), no. 3, 535-571. Zbl 0316.58010 MR 0331425 · Zbl 0316.58010 · doi:10.1070/im1973v007n03abeh001958
[36] Klingenberg, W. P. A.: Riemannian geometry. Second edition. De Gruyter Stud. Math. 1, de Gruyter, Berlin, 1995. Zbl 0911.53022 MR 1330918 · Zbl 0911.53022 · doi:10.1515/9783110905120
[37] Kronheimer, P. and Mrowka, T.: Monopoles and three-manifolds. New Math. Monogr. 10, Cambridge University Press, Cambridge, 2007. Zbl 1158.57002 MR 2388043 · Zbl 1158.57002 · doi:10.1017/CBO9780511543111
[38] Kronheimer, P., Mrowka, T., Ozsváth, P. and Szabó, Z.: Monopoles and lens space surgeries. Ann. of Math. (2) 165 (2007), no. 2, 457-546. Zbl 1204.57038 MR 2299739 · Zbl 1204.57038 · doi:10.4007/annals.2007.165.457
[39] Liu, C. G.: The relation of the Morse index of closed geodesics with the Maslov-type index of symplectic paths. Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 2, 237-248. Zbl 1092.58009 MR 2135288 · Zbl 1092.58009 · doi:10.1007/s10114-004-0406-3
[40] Long, Y.: Multiplicity and stability of closed geodesics on Finsler 2-spheres. J. Eur. Math. Soc. (JEMS) 8 (2006), no. 2, 341-353. Zbl 1099.53036 MR 2239281 · Zbl 1099.53036 · doi:10.4171/JEMS/56
[41] Nelson, J. and Weiler, M.: Embedded contact homology of prequantization bundles. Preprint 2020, arXiv :2007.13883.
[42] Rademacher, H.-B.: The length of a shortest geodesic loop. C. R. Math. Acad. Sci. Paris 346 (2008), no. 13-14, 763-765. Zbl 1146.53027 MR 2427078 · Zbl 1146.53027 · doi:10.1016/j.crma.2008.06.001
[43] Shibata, T.: Existence of a positive hyperbolic orbit in the presence of an elliptic orbit in three-dimensional Reeb flows. Preprint 2022, arXiv :2204.01277.
[44] Shibata, T.: Dynamically convex and global surface of section in L.p; p 1/ from the view-point of ECH. Preprint 2022, arXiv :2306.04132.
[45] Taubes, C. H.: The Seiberg-Witten equations and the Weinstein conjecture. Geom. Topol. 11 (2007), no. 4, 2117-2202. Zbl 1135.57015 MR 2350473 · Zbl 1135.57015 · doi:10.2140/gt.2007.11.2117
[46] Taubes, C. H.: Embedded contact homology and Seiberg-Witten Floer cohomology I. Geom. Topol. 14 (2010), no. 5, 2497-2581. Zbl 1275.57037 MR 2746723 · Zbl 1275.57037 · doi:10.2140/gt.2010.14.2497
[47] Taubes, C. H.: Embedded contact homology and Seiberg-Witten Floer cohomology V. Geom. Topol. 14 (2010), no. 5, 2961-3000. Zbl 1276.57027 MR 2746727 · Zbl 1276.57027 · doi:10.2140/gt.2010.14.2961
[48] Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differential Equa-tions 33 (1979), no. 3, 353-358. Zbl 0388.58020 MR 0543704 · Zbl 0388.58020 · doi:10.1016/0022-0396(79)90070-6
[49] Ziller, W.: Geometry of the Katok examples. Ergodic Theory Dynam. Systems 3 (1983), no. 1, 135-157. Zbl 0559.58027 MR 0743032 · Zbl 0559.58027 · doi:10.1017/S0143385700001851
[50] .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.