×

Topological indices of maximal outerplane graphs with two simplicial vertices. (Russian. English summary) Zbl 1498.92335

Summary: We explore the maximal outerplane graphs (MOP-graphs) with two simplicial vertices, laid out on the lattice of equilateral triangles (lattice MOPs, or LMOPs). Weak dual of LMOPs are isomorphic and similar to molecular graphs of isomers of conjugated polyene hydrocarbons (CPH). For this reason the LMOPs lend themselves to prognosticating properties of CPH. We suggest a new approach to search of multiple structure-property relationship (QSPR) correlations between topological indices (TI) of LMOPs from some given set and the physico-chemical parameters of isomers (CPH). The essence of such an approach lies in the initial selection of TI suitable for prognostication of properties of unbranched isomers CPH with subsequent search for structure-property correlations between already selected TI and physico-chemical parameters of isomers CPH. Such a methodology allows to eliminate unsuitable TIs, as well as physico-chemical parameters that poorly correlate with the 3D Wiener index. The fitness of the suggested approach has been proven through a computational experiment. Within the framework of the suggested approach we studied the TI of LMOP-graphs of \(n=8,10,\dots,28\) orders, whose weak duals are isomorphic and geometrically similar to the molecular graphs of CPH model adopted in [S. J. Cyvin et al., “Chemical relevance of a pure combinatorial problem: isomers of conjugated polyenes”, Struct. Chem. 7, No. 3, 183–186 (1996; doi:10.1007/BF02281229)]. From the multitude of Balaban, Wiener, Schultz, Randich, Harary and Zagreb group TIs simple \(J\) and modified \(J'\) Balaban indices were selected.

MSC:

92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C92 Chemical graph theory
05C09 Graphical indices (Wiener index, Zagreb index, Randić index, etc.)

References:

[1] Harary F., Graph Theory, Reading, Addison-Wesley, 1969 · Zbl 0182.57702
[2] Diudea M. V., Gutman I., Jantschi L., Molecular Topology, Nova, Huntington, New York, 2001
[3] Wiener H., “Structural determination of paraffin boiling points”, Journal of the American Chemical Society, 69:1 (1947), 17-20 · doi:10.1021/ja01193a005
[4] Todeschini R., Consonni V., Molecular Descriptors for Chemoinformatics, v. I & II, Wiley, Weinheim, 2009
[5] Polien — Polyene, data obrascheniya : 05.11.2021
[6] Moss G. P., “Basic terminology of stereochemistry (IUPAC Recommendations 1996)”, Pure and Applied Chemistry, 68:12 (1996), 2193-2222 · doi:10.1351/pac199668122193
[7] Craig N. C., Demaison J., Groner P., Rudolph H. D., “Electron delocalization in polyenes: A semiexperimental equilibrium structure for (3E) 1,3,5-hexatriene and theoretical structures for (3Z,5Z), (3E,5E), and (3E,5Z) 1,3,5,7-octatetraene”, The Journal of Physical Chemistry A, 119:1 (2015), 195-204 · doi:10.1021/jp510237h
[8] Panchenko Y. N., De Mare G. R., Aroca R. Bock C. W., “All-trans- and t,T,t,C,t,T,t-deca-1,3,5,7,9-pentaenes: Ab initio structures, vibrational analyses, and some regularities in the series of related molecules”, Structural Chemistry, 11:2-3 (2000), 195-204
[9] Dobrynin A. A., Entringer R., Gutman I., “Wiener index of trees: Theory and applications”, Acta Applicandae Mathematicae, 66:3 (2001), 211-249 · Zbl 0982.05044 · doi:10.1023/A:1010767517079
[10] Cyvin S. J., Lloyd E. K, Cyvin B. N., Brunvoll J., “Chemical relevance of a pure combinatorial problem: Isomers of conjugated polyenes”, Structural Chemistry, 7:3 (1996), 183-186 · doi:10.1007/BF02281229
[11] Markov M., “On the vertex separation of maximal outerplanar graphs”, Serdica Journal of Computing, 154:5 (2008), 207-238 · Zbl 1179.05096
[12] Uznanski Dan., Grid, From MathWorld — A Wolfram Web Resource, created by Eric W.
[13] Ponarin Ya.P., Elementary geometry, v. Vol. 1, Planimetry, plane transformations, House of Moscow Center for Continuous Mathematical Education, Moscow, 2004 (In Russ.)
[14] Nosov Yu.L., “Maximal outerplane graphs with two simplicial vertices”, Applied Discrete Mathematics, 29:3 (2015), 95-109 (In Russ.) · Zbl 07310312
[15] Nosov Yu.L., “Extremal by Wiener index maximal outerplane graphs with two simplicial vertices”, Chelyabinsk Physical and Mathematical Journal, 4:3 (2019), 285-322 (In Russ.) · Zbl 1473.05066
[16] Draper N.R, Smith H., Applied Regression Analysis, Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapor, 2009 · Zbl 0158.17101
[17] Bogdanov B., Nikolić S., Trinajstić N., “On the three-dimensional wiener number”, Journal of Mathematical Chemistry, 3:7 (1989), 299-309 · doi:10.1007/BF01169597
[18] CRC Standard Mathematical Tables and Formulas, 33rd ed., Chapman and Hall/CRC,, Boca Raton, London, New York, 2018 · Zbl 1379.00008
[19] Asratian A. S., Oksimets N., “Graphs with Hamiltonian balls”, Australian Journal of Combinatorics, 17:4 (1998), 185-198 · Zbl 0903.05035
[20] Konstantinova E. V., Vidyuk M. V., “Discriminating tests of information and topological indices. Animals and trees”, Journal of Chemical Information and Computer Sciences, 43:6 (2003), 1860-1871 · doi:10.1021/ci025659y
[21] Balaban A. T., Ionescu-Pallas N., Balaban T. S., “Asymptotic values of topological indices \(J\) and \(J''\) (Average distance sum connectivities) for infinite acyclic graphs”, MATCH Communications in Mathematical and in Computer Chemistry, 17 (1985), 121-146 · Zbl 0583.05051
[22] Hexagonal lattice, (accessed: 25.11.2021)
[23] Wolfram Mathematica, (accessed: 25.11.2021)
[24] Lewars E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics, Springer, Dordrecht, Heidelberg, London, New York, 2011 · Zbl 1367.92005
[25] Hanwell M. D., Curtis D. E., Lonie D. C., Vandermeersch T., Zurek E., Hutchison G. R., “Avogadro: an advanced semantic chemical editor, visualization, and analysis platform”, Journal of Cheminformatics, 4:17 (2012), 1-17
[26] Halgren T. A., “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94”, Journal of Computational Chemistry, 1996
[27] Granovsky A. A., Firefly v.8.
[28] Schmidt M. W., Baldridge K. K., Boatz J. A., Elbert S. T., Gordon M. S., Jensen J. H., Koseki S., Matsunaga N., Nguyen K. A., Su S., Windus T. L., Dupuis M., Montgomery J. A., “General atomic and molecular electronic structure system”, Journal of Computational Chemistry, 14:11 (1993), 1347-1363 · doi:10.1002/jcc.540141112
[29] Becke A. D., “Density-functional thermochemistry. III. The role of exact exchange”, The Journal of Chemical Physics, 98:7 (1993), 5648-5652 · doi:10.1063/1.464913
[30] Grimme S., Ehrlich S., Goerigk L., “Effect of the damping function in dispersion corrected density functional theory”, Journal of Computational Chemistry, 32:7 (2011), 1456-1465 · doi:10.1002/jcc.21759
[31] Weigend F., Ahlrichs R., “Balanced basis sets of split valence{,} triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy”, Physical Chemistry Chemical Physics, 7:18 (2005), 3297-3305 · doi:10.1039/b508541a
[32] Neese F., “The ORCA program system”, Wiley Interdisciplinary Reviews: Computational Molecular Science, 2:1 (2005), 73-78 · doi:10.1002/wcms.81
[33] Zhurko G. A., Chemcraft — graphical program for visualization of quantum chemistry computations, Ivanovo, Russia, 2005 · Zbl 1103.16019
[34] Furtula B., Lekishvili G., Gutman I., “A graph theoretical approach to cis/trans isomerism”, Journal of the Serbian Chemical Society, 79:7 (2014), 805-813 · doi:10.2298/JSC140120010F
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.