×

On Riesz duals for Gabor systems on LCA groups. (English) Zbl 07905934

Summary: In the context of separable uniform time-frequency lattices in locally compact abelian groups, we analyse the circumstances in which, for a given Gabor frame, the adjoint Gabor system is an R-dual of the Gabor frame. In this regard, we also prove a necessary condition for a given Gabor Bessel sequence to be complete.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
43A70 Analysis on specific locally compact and other abelian groups
43A32 Other transforms and operators of Fourier type

References:

[1] Balan, R.; Casazza, PG; Heil, C.; Landau, Z., Deficits and excesses of frames, Adv. Comput. Math., 18, 2, 93-116, 2003 · Zbl 1029.42030 · doi:10.1023/A:1021360227672
[2] Bekka, B., Square integrable representations, von Neumann algebras and an application to Gabor analysis, J. Fourier Anal. Appl., 10, 325-349, 2004 · Zbl 1064.46058 · doi:10.1007/s00041-004-3036-3
[3] Casazza, PG; Kutyniok, G.; Lammers, MC, Duality principles in frame theory, J. Fourier Anal. Appl., 10, 4, 383-408, 2004 · Zbl 1058.42020 · doi:10.1007/s00041-004-3024-7
[4] Christensen, O., Xiao, X.C., Zhu, Y.C.: Characterizing R-duality in Banach spaces. Acta Math. Sin. (Engl. Ser.) 29(1), 75-84 (2013) · Zbl 1268.42054
[5] Chuang, Z.; Zhao, J., On equivalent conditions of two sequences to be R-dual, J. Inequal. Appl., 10, 1, 1-8, 2015 · Zbl 1327.46015
[6] Daubechies, I.; Landau, HJ; Landau, Z., Gabor time-frequency lattices and the Wexler-Raz identity, J. Fourier Anal. Appl., 1, 4, 437-478, 1995 · Zbl 0888.47018 · doi:10.1007/s00041-001-4018-3
[7] Dong, J.; Li, Y-Z, Duality principles in Hilbert-Schmidt frame theory, Math. Methods Appl. Sci., 44, 6, 4888-4906, 2021 · Zbl 1475.42043 · doi:10.1002/mma.7075
[8] Enayati, F.; Asgari, MS, Duality properties for generalized frames, Banach J. Math. Anal., 11, 4, 880-898, 2017 · Zbl 1391.42035 · doi:10.1215/17358787-2017-0027
[9] Enstad, U., The Balian-Low theorem for locally compact abelian groups and vector bundles, J. Math. Pures Appl., 139, 143-176, 2020 · Zbl 1508.42034 · doi:10.1016/j.matpur.2019.12.005
[10] Feichtinger, H.G., Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups. In: Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 233-266. Birkhäuser, Boston (1998) · Zbl 0890.42012
[11] Feichtinger, HG; Luef, F., Wiener Amalgam spaces for the fundmental identity of Gabor analysis, Collect. Math., 57, 233-253, 2006 · Zbl 1135.39303
[12] Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 123-170. Birkhäuser, Boston (1998) · Zbl 0890.42008
[13] Folland, GB, Harmonic Analysis in Phase Space, 1989, Princeton, New Jersey: Princeton University Press, Princeton, New Jersey · Zbl 0682.43001 · doi:10.1515/9781400882427
[14] Folland, GB, A Course in Abstract Harmonic Analysis, 1995, Boca Raton, Florida: Studies in Advanced Mathematics. CRC Press, Boca Raton, Florida · Zbl 0857.43001
[15] Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. In: Gabor Analysis and Algorithms. Applied and Numerical Harmonic Analysis, pp. 211-231. Birkhäuser, Boston (1998) · Zbl 0890.42011
[16] Gröchenig, K.; Haimi, A.; Romero, JL, Completeness of Gabor systems, J. Approx. Theory, 207, 283-300, 2016 · Zbl 1337.42031 · doi:10.1016/j.jat.2016.03.001
[17] Heil, C., History and evolution of the density theorem for Gabor frames, J. Fourier Anal. Appl., 13, 2, 113-166, 2007 · Zbl 1133.42043 · doi:10.1007/s00041-006-6073-2
[18] Jakobsen, MS; Lemvig, J., Co-compact Gabor systems on locally compact abelian groups, J. Fourier Anal. Appl., 22, 1, 36-70, 2016 · Zbl 1440.42154 · doi:10.1007/s00041-015-9407-0
[19] Jakobsen, MS; Lemvig, J., Density and duality theorems for regular Gabor frames, J. Funct. Anal., 270, 1, 229-263, 2016 · Zbl 1326.42039 · doi:10.1016/j.jfa.2015.10.007
[20] Jakobsen, MS; Luef, F., Duality of Gabor frames and Heisenberg modules, J. Noncommut. Geom., 14, 4, 1445-1500, 2021 · Zbl 1481.46055 · doi:10.4171/jncg/413
[21] Janssen, AJEM, Duality and biorthogonality for Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1, 4, 403-436, 1995 · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[22] Kaniuth, E.; Kutyniok, G., Zeros of the Zak transform on locally compact abelian groups, Proc. Am. Math. Soc., 126, 12, 3561-3569, 1998 · Zbl 0907.43005 · doi:10.1090/S0002-9939-98-04450-5
[23] Li, L.; Li, P., Characterizing the R-duality of g-frames, J. Inequal. Appl., 69, 1-14, 2019 · Zbl 1499.42137
[24] Li, Y-Z; Dong, J., On a class of weak R-duals and the duality relations, Banach J. Math. Anal., 14, 2, 450-469, 2020 · Zbl 1445.42022 · doi:10.1007/s43037-019-00002-8
[25] Li, Y-Z; Dong, J., Duality relations associated with weak g-R-duals, Linear Multilinear Algebra, 70, 20, 5482-5501, 2021 · Zbl 1505.42036 · doi:10.1080/03081087.2021.1918052
[26] Li, Y-Z; Hussain, T., Duality principles for \({F}_a\)-frame theory in \({L}^2({R}_+)\), Bull. Malays. Math. Sci. Soc., 44, 2401-2423, 2021 · Zbl 1472.42047 · doi:10.1007/s40840-021-01073-3
[27] Rieffel, MA, Projective modules over higher-dimensional noncommutative tori, Can. J. Math., 40, 2, 257-338, 1988 · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[28] Romero, JL; van Velthoven, JT, The density theorem for discrete series representations restricted to lattices, Expo. Math., 40, 2, 265-301, 2022 · Zbl 1501.22003 · doi:10.1016/j.exmath.2021.10.001
[29] Ron, A.; Shen, Z., Weyl-Heisenberg frames and Riesz bases in \(L^2(\mathbb{R}^d)\), Duke Math. J., 89, 2, 237-282, 1997 · Zbl 0892.42017 · doi:10.1215/S0012-7094-97-08913-4
[30] Rudin, W.: Fourier Analysis on Groups. Wiley Classics Library (1990) · Zbl 0698.43001
[31] Stoeva, DT; Christensen, O., On R-duals and the duality principle in Gabor analysis, J. Fourier Anal. Appl., 21, 2, 383-400, 2015 · Zbl 1312.42037 · doi:10.1007/s00041-014-9376-8
[32] Stoeva, DT; Christensen, O., On various R-duals and the duality principle, Integr. Equ. Oper. Theory, 84, 4, 577-590, 2016 · Zbl 1338.42047 · doi:10.1007/s00020-016-2283-4
[33] Takhteh, F.; Khosravi, A., R-duality in g-frames, Rocky Mt. J. Math., 47, 2, 649-665, 2017 · Zbl 1369.42022 · doi:10.1216/RMJ-2017-47-2-649
[34] Tolimieri, R., Orr, R. S.: Characterization of Weyl-Heisenberg frames via Poisson summation relationships. Proc. Int. Conf. Acoust. Speech Signal Process. 4, 277-280 (1992)
[35] Tolimieri, R.; Orr, RS, Poisson summation, the ambiguity function, and the theory of Weyl-Heisenberg frames, J. Fourier Anal. Appl., 1, 3, 233-247, 1995 · Zbl 0885.94008 · doi:10.1007/s00041-001-4011-x
[36] Xiao, X., Zhu, Y.: Duality principles of frames in Banach spaces. Acta Math. Sci. Ser. A Chin. Ed. 29(1), 94-102 (2009) · Zbl 1199.42137
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.