×

Perturbation vectors. (English) Zbl 0941.47009

The authors study the algebraic \(K\)-theory of algebras of operators in Hilbert space \(H\) having trace class commutators. To do this they create two new objects: “perturbation vectors” \(\sigma_{T,S}\) and the joint torsion \(\tau(S_{1},S_{2},T_{2},T_{1})\) defined for two such pairs when \(S_{1}S_{2}=T_{2}T_{1}\). The perturbation vectors are obtained through the construction of a section \(\sigma\) of a canonical determinant bundle. The main results of this article are the proofs of the existence of this section and the basic properties of the perturbation vectors \(\sigma_{T,S}\) which give a trivialization of the bundle. Let \({\mathcal F}\) denote the Fredholm operators on \(H\) and \(Q\rightarrow {\mathcal F} \) be the Quillen det bundle.
Form \({\mathcal Q}+{\mathcal Q}^{*}\) as a bundle over \({\mathcal F}\times{\mathcal F}\). Let \(\wp= \operatorname {det} ({\mathcal Q}+{\mathcal Q}^{*})\) be the determinant bundle and \(M\equiv\{ (S,T)\mid (S,T)\in {\mathcal F}\times{\mathcal F}, S-T\in {\mathcal L}^{1}(H)\}\) with \(i_{M}:M\rightarrow {\mathcal F}\times {\mathcal F}\) the inclusion map. The authors prove the existence of a trivialization of the pullback \(i^{*}_{M}(\wp)\) by construction of a section \(\sigma\), called the perturbation section. The thereby constructed “perturbation vectors” \(\sigma_{S,T}\) generalize the perturbation determinant \(\operatorname {det} (S^{-1}T)\), when the operators \(S\),\(T\) are singular. Then, for pairs of elements \((A,D)\) and \((B,C)\) in \(M\) with \(AB=CD\) there is a Koszul complex \(K(A,B;C,D)\) with two torsion vectors built from its homology whose tensor product is a scalar multiple of \(\sigma_{A,D}\otimes \sigma_{B,C}.\) This gives a number \(\tau(A,B,C,D;H) \in C^{*}\) called the joint torsion. It has previously been shown that if \(A\) and \(B\) are commuting operators in \({\mathcal F}\) then the Steinberg symbol determinant \(\operatorname {det} _{*}\circ \partial\{ A+ L^{1}(H), B+L^{1}(H)\} =\tau(A,B,B,A;H).\) Corresponding results are now proved in the non-commuting case, and the section \(\sigma\) and the joint torsion are used to examine the \(n\times n\) subdeterminants of Toeplitz matrices with non-zero index as \(n\rightarrow \infty\).

MSC:

47A55 Perturbation theory of linear operators
47A53 (Semi-) Fredholm operators; index theories
47B20 Subnormal operators, hyponormal operators, etc.
19K99 \(K\)-theory and operator algebras
46M20 Methods of algebraic topology in functional analysis (cohomology, sheaf and bundle theory, etc.)
Full Text: DOI

References:

[1] Achiezer, N.I.,The continuous analogues of some theorems on Toeplitz matrices, Ukrainian Math. J16 (1964), 445-462. · Zbl 0154.37202 · doi:10.1007/BF02537650
[2] Baxter, G.,A convergence equivalence related to polynomials on the unit circle, Trans. Amer. Math. Soc.99 (1961), 471-487. · Zbl 0116.35705 · doi:10.1090/S0002-9947-1961-0126126-8
[3] Baxter, G.,A norm inequality for a finite ?section? Wiener-Hopf equation, Illinois Jour. Math.7 (1963), 97-103. · Zbl 0113.09101
[4] Böttcher, A and Silbermann, B,The asymptotic behaviour of Toeplitz determinants for generating functions with zeros of integral orders, Math. Nachr.102 (1981), 79-105. · Zbl 0479.47025 · doi:10.1002/mana.19811020108
[5] Böttcher, A and Silbermann, B, ?Invertibility and asymptotics of Toeplitz matrices. Math. Forschung 17,? Akademie-Verlag, 1983. · Zbl 0578.47015
[6] Carey, R.W. and Pincus, J.D.,Joint Torsion, Preprint (1995-1996), 1-174.
[7] Carey, R.W. and Pincus, J.D.,Joint Torsion of Toeplitz operators with H ? symbols, Integral Equations and Operator Theory (1998), 1-32 to appear.
[8] Carey, R. and Pincus, J,Mosaics, Principal functions and mean motion in von Neumann algebras, Acta Mathematica138 (1977), 153-218. · Zbl 0364.46048 · doi:10.1007/BF02392315
[9] Deutsch, F.,The alternating method of von Neumann, Internat. Ser. Numer. Math., Multivariate approximation theory, Proc. conf. Math. Res. Institute. Oberwolfach51, 83-96 (1977), Birkhauser Verlag, Basel-Boston.
[10] Gohberg, I.C. and Fel’dman, I.A., ?Convolution equations and projection methods for their solution,? American Mathematical Society; Trans. of Math. Monographs Volume 41, 1974 from the Russian 1971.
[11] Gohberg, I. and Levcenko, V.I., Math. Issled6:4 (1971) 20-36.
[12] Gohberg, I. and Prössdorf S.,Ein Projektionsverfarhen zur Lösung entarteter Systeme von diskreten Wiener-Hopf-Gleichungen, Math. Nachr.65 (1975), 19-45. · Zbl 0302.65027 · doi:10.1002/mana.19750650104
[13] Grenander, U. and Szegö, F, ?Toeplitz forms and their applications,? Univ. of California Press, 1957.
[14] Kac, M.,Toeplitz matrices, translation kernels and a related problem in probability, Duke Math. J.21 (1954), 501-509. · Zbl 0056.10201 · doi:10.1215/S0012-7094-54-02149-3
[15] Kac, M., Murock, W. and Szegö, G.,On the eigenvalues of certain hermitian forms, J. Rational Mechanics and Analysis2 (1953), 767-800. · Zbl 0051.30302
[16] Knudsen, F.F. and Mumford, D.,The projectivity of the moduli space of stable curves. I; preliminaries on ?Det? and ?Div?, Math. Scand.39 (1976), 19-55. · Zbl 0343.14008
[17] Krein, M.G.,On some investigations in the perturbation theory of self-adjoint operators (Russian), First Summer School, Kiev (1964), 103-187.
[18] Linnik, I. Ju,A multidimensional analogue of the a limit theorem of G. Szegö, Math USSR-Izvestia9 (1975), 1323-1332. · Zbl 0342.41024 · doi:10.1070/IM1975v009n06ABEH001523
[19] Nikol’skii, N.K., ?Treatise on the shift operator,? Springer-Verlag, Grundlehren 273, Berlin, 1986.
[20] Peller, V.,Functional calculus for a pair of commuting self-adjoint operators, J. Funct. Anal.112 (1993), 325-342. · Zbl 0781.47024 · doi:10.1006/jfan.1993.1036
[21] Pietsch, A., ?Eigenvalues and s-numbers,? Cambridge University Press- Studies in Advanced Mathematics #13, 1987. · Zbl 0615.47019
[22] Pincus, J.D. Editor, Summer Institute on Spectral Theory and Statistical Mechanics (1965), Brookhaven National Laboratory, Upton N.Y.
[23] Quillen, D.G.,Det of Cauchy Riemann Operators on Riemann Surfaces, Functional Analysis Appl (1985), 31-34. · Zbl 0603.32016
[24] Ramakrishnan, D.,Regulators, Algebraic cycles, Values of L-functions, Contemporary Math. ?Algebraic K-Theory and Algebraic Number Theory?83 (1989). · Zbl 0694.14002
[25] Riesz, F. and Sz.-Nagy, B., ?Lecons D’analyse Fonctionnelle, 2’nd ed.,? Akademie Kiado, Budapest, 1953. · Zbl 0122.11205
[26] Szegö, G,Ein Grenzwertsatz über die Toeplitzschen Determinanten einer reelen positiven function, Math. Ann,76 (1915), 490-503. · JFM 45.0518.02 · doi:10.1007/BF01458220
[27] Szegö, G,on certain Hermitian forms associated with the fourier series of a positive function, Festskrift Marcel Riesz (Lund 1952), 228-238. · Zbl 0048.04203
[28] Sz-Nagy and C. Foias, ?Analyse Harmonique Des Operateurs de L’espace de Hilbert,? Masson et Cie, 1967.
[29] Vasyunin, V.I.,Unconditionally convergent spectral expansions and interpolation problems, Trudy. Mat. Inst. Steklov, [Russian]130 (1977), 5-49.
[30] Widom, H.,Szegö’s limit theorem: The higher dimensional matrix case, Jour. Funct. Analysis39 (1980), 182-198. · Zbl 0465.47034 · doi:10.1016/0022-1236(80)90012-9
[31] Widom, H., ?Asymptotic Expansions for Pseudodifferential Operators on Bounded Domains,? Springer-Verlag, Lecture Notes in Mathematics 1152. · Zbl 0582.35002
[32] Kolmogorov, A.N. and Rozanov, Yu.A., On conditions for strong mixing of a stationary Gaussian process, Teor. Verojatnost. i. Primen5 (1960), 221-227. · Zbl 0091.30001
[33] Helson, H. and Szegö, G.,A problem of prediction theory, Ann. Mat. Pura Appl.51 (1960), 107-138. · Zbl 0178.50002 · doi:10.1007/BF02410947
[34] Helson, H. and Sarason, D.,Past and Future, Math. Scand.21 (1967), 5-16. · Zbl 0241.60029
[35] J. Anderson and L.N. Vaserstein,Commutators in ideals of trace class operators, Indiana Univ. Math. Jour.35 (1986), 345-372. · Zbl 0602.47032 · doi:10.1512/iumj.1986.35.35021
[36] D. Quillen, ?Actes Congress Intern. Math.-Cohomology of Groups?, 1970.
[37] Orth., D.,The discrete Wiener-Hopf equation, Math. Ann.182 (1969), 104-120. · Zbl 0175.14904 · doi:10.1007/BF01376217
[38] I.A. Volodin,Algebraic K-theory as an extraordinary homology theory on the category of associative rings with 1, Isz. AN. USSR, Ser mat35 (1971), 844-873. · Zbl 0229.18010
[39] Devinatz, A.,The strong Szegö limit theorem, Illinois. J. Math11 (1967), 160-175. · Zbl 0166.40301
[40] Widom, H,Asymptotic behavior of block Toeplitz matrices and determinants, II, Adv. in Math.21 (1976), 1-29. · Zbl 0344.47016 · doi:10.1016/0001-8708(76)90113-4
[41] Fisher, M.E. and Hartwig R.E.,Toeplitz determinants, some applications, theorems and conjectures, Adv. Chem. Phys.15 (1968), 333-353. · doi:10.1002/9780470143605.ch18
[42] Fisher, M.E. and Hartwig R.E.,Asymptotic behavior of Toeplitz matrices and determinants, Arch. Rat. Mech. Anal.32 (1969), 190-255. · Zbl 0169.04403
[43] J. Silvester, ?Introduction to Algebraic K-Theory?, Chapman and Hall, New York, 1981. · Zbl 0468.18006
[44] Berrick, A.J., ?An approach to algebraic K-theory?, Pitman Notes in Math. London, 1982. · Zbl 0479.18006
[45] T.T. Wu,Theory of Toeplitz determinants and spin correlations of the two dimensional Ising model, Physical Review149 (1996), 380. · doi:10.1103/PhysRev.149.380
[46] Fisher, M.E. and Stephenson, J.,Statistical mechanics of dimers on a plane lattice, II, Dimer correlations and monomers, Physical Review132 (1963), 1411-14341. · Zbl 0132.22304 · doi:10.1103/PhysRev.132.1411
[47] Lenard, A.,Momentum distribution in the ground state of the one dimensional system of impenetrable bosons, J. Math, Phys.5 (1964), 930-943. · doi:10.1063/1.1704196
[48] Lenard, A.,Some remarks on large Toeplitz determinants, Pacific Jour. Math.42 (1972), 137-145. · Zbl 0255.42005
[49] Dyson, F.,Statistical theory of the energy levels of complex systems, I, J. Math., Phys.3 (1962), 140. · Zbl 0105.41604 · doi:10.1063/1.1703773
[50] Dyson, F.,A Brownian motion model for the eigenvalues of a random matrix, III, J. Math,. Phys.3 (1962), 1191. · Zbl 0111.32703 · doi:10.1063/1.1703862
[51] Wilson, K.,Proof of a conjecture of Dyson, J. Math, Phys.3, 1040.
[52] Hayashi, E.,The kernel of a Toeplitz operator, Integral Equations and Operator Theory9 (1986), 588-591. · Zbl 0636.47023 · doi:10.1007/BF01204630
[53] Malmquist, F.,Sur la détermination d’une class de fonctions analytiques par leurs valeurs dans un ensemble donné de points, Comptes Rendues du Sixième Congrès (1925) des mathématiciens scandinaves (Koppenhagen, 1926), 253-259.
[54] Walsh, J.L., ?Interpolation and approximation by rational functions in the complex domain?, Amer. Math. Soc Colloquium Publications. vol 20, 1935. · Zbl 0013.05903
[55] Bass, H., ?Algebraic K-Theory? W.A. Benjamin, N.Y., 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.